Day55.动规:判断子序列、不同的子序列
0392.判断子序列
链接:0392.判断子序列
这题与1143.最长公共子序列有相似之处,只不过s
完全是t
的子序列,只需单向比较
dp[i][j]
表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]
。初始化更方便。- 递推公式:
if (s[i - 1] == t[j - 1])
,那么dp[i][j] = dp[i - 1][j - 1] + 1
;因为找到了一个相同的字符,相同子序列长度自然要在dp[i-1][j-1]
的基础上加1if (s[i - 1] != t[j - 1])
,此时相当于t要删除元素,t如果把当前元素t[j - 1]
删除,那么dp[i][j]
的数值就是看s[i - 1]
与t[j - 2]
的比较结果了,即:dp[i][j] = dp[i][j - 1]
;
- 初始化:从递推公式可以看出
dp[i][j]
都是依赖于dp[i - 1][j - 1]
和dp[i][j - 1]
,所以dp[0][0]
和dp[i][0]
是一定要初始化的。dp[i][0]
表示以下标i-1为结尾的字符串,与空字符串的相同子序列长度,所以为0。dp[0][j]
同理。 - 遍历顺序:从上到下,从左到右
class Solution {
public:
bool isSubsequence(string s, string t)
{
// dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。初始化更方便。
// 递推公式:
// if (s[i - 1] == t[j - 1]),那么dp[i][j] = dp[i - 1][j - 1] + 1;,因为找到了一个相同的字符,相同子序列长度自然要在dp[i-1][j-1]的基础上加1
// if (s[i - 1] != t[j - 1]),此时相当于t要删除元素,t如果把当前元素t[j - 1]删除,那么dp[i][j] 的数值就是 看s[i - 1]与 t[j - 2]的比较结果了,即:dp[i][j] = dp[i][j - 1];
// 初始化:
// 从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],所以dp[0][0]和dp[i][0]是一定要初始化的。
// dp[i][0] 表示以下标i-1为结尾的字符串,与空字符串的相同子序列长度,所以为0. dp[0][j]同理。
// 遍历顺序:从上到下,从左到右
if (s.size() > t.size()) {
return false;
}
if (s.empty()) {
return true;
}
vector<vector<int>> dp(s.size() + 1, vector<int>(t.size() + 1, 0));
for (int i = 1; i <= s.size(); ++i) {
for (int j = 1; j <= t.size(); ++j) {
if (s[i - 1] == t[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = dp[i][j - 1];
}
}
}
return dp.back().back() == s.size();
}
};
0115.不同的子序列
链接:0115.不同的子序列
参考:代码随想录
这题中间计算会溢出。。。
dp数组含义
dp[i][j]
:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]
。
递推公式
这一类问题,基本是要分析两种情况
s[i - 1]
与t[j - 1]
相等s[i - 1]
与t[j - 1]
不相等
当s[i - 1]
与 t[j - 1]
相等时,dp[i][j]
可以有两部分组成。
一部分是用s[i - 1]
来匹配,那么个数为dp[i - 1][j - 1]
。
一部分是不用s[i - 1]
来匹配,个数为dp[i - 1][j]
。
为什么还要考虑 不用s[i - 1]
来匹配,都相同了指定要匹配啊。
例如: s:bagg 和 t:bag ,s[3]
和 t[2]
是相同的,但是字符串s也可以不用s[3]
来匹配,即用s[0]s[1]s[2]
组成的bag。
当然也可以用s[3]
来匹配,即:s[0]s[1]s[3]
组成的bag。
所以当s[i - 1]
与 t[j - 1]
相等时,dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]
当s[i - 1]
与 t[j - 1]
不相等时,dp[i][j]
只有一部分组成,不用s[i - 1]
来匹配,即:dp[i - 1][j]
。所以递推公式为:dp[i][j] = dp[i - 1][j]
初始化
从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
和 dp[i][j] = dp[i - 1][j];
中可以看出dp[i][0]
和dp[0][j]
是一定要初始化的。
每次当初始化的时候,都要回顾一下dp[i][j]
的定义,不要凭感觉初始化。
dp[i][0]
表示什么呢?
dp[i][0]
表示:以i-1为结尾的s可以随便删除元素,出现空字符串的个数。
那么dp[i][0]
一定都是1,因为也就是把以i-1为结尾的s,删除所有元素,出现空字符串的个数就是1。
再来看dp[0][j]
,dp[0][j]
:空字符串s可以随便删除元素,出现以j-1为结尾的字符串t的个数。
那么dp[0][j]
一定都是0,s如论如何也变成不了t。
最后就要看一个特殊位置了,即:dp[0][0]
应该是多少。
dp[0][0]
应该是1,空字符串s,可以删除0个元素,变成空字符串t。
class Solution {
public:
int numDistinct(string s, string t)
{
if (s.size() < t.size()) {
return 0;
}
if (t.empty()) {
return 1;
}
vector<vector<int>> dp(s.size() + 1, vector<int>(t.size() + 1, 0));
for (int i = 0; i < dp.size(); ++i) {
dp[i][0] = 1;
}
for (int j = 1; j < dp[0].size(); ++j) {
dp[0][j] = 0;
}
for (int i = 1; i <= s.size(); ++i) {
for (int j = 1; j <= t.size(); ++j) {
if (s[i - 1] == t[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
} else {
dp[i][j] = dp[i - 1][j];
}
}
}
zwn::outputIntArrArr(dp);
return dp.back().back();
}
};