Day55.动规:判断子序列、不同的子序列

Day55.动规:判断子序列、不同的子序列

0392.判断子序列

链接:0392.判断子序列

这题与1143.最长公共子序列有相似之处,只不过s完全是t的子序列,只需单向比较

  1. dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。初始化更方便。
  2. 递推公式:
    1. if (s[i - 1] == t[j - 1]),那么dp[i][j] = dp[i - 1][j - 1] + 1;因为找到了一个相同的字符,相同子序列长度自然要在dp[i-1][j-1]的基础上加1
    2. if (s[i - 1] != t[j - 1]),此时相当于t要删除元素,t如果把当前元素t[j - 1]删除,那么dp[i][j]的数值就是看s[i - 1]t[j - 2]的比较结果了,即:dp[i][j] = dp[i][j - 1];
  3. 初始化:从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1]dp[i][j - 1],所以dp[0][0]dp[i][0]是一定要初始化的。dp[i][0]表示以下标i-1为结尾的字符串,与空字符串的相同子序列长度,所以为0。dp[0][j]同理。
  4. 遍历顺序:从上到下,从左到右
class Solution {
public:
    bool isSubsequence(string s, string t)
    {
        // dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。初始化更方便。
        // 递推公式:
        // if (s[i - 1] == t[j - 1]),那么dp[i][j] = dp[i - 1][j - 1] + 1;,因为找到了一个相同的字符,相同子序列长度自然要在dp[i-1][j-1]的基础上加1
        // if (s[i - 1] != t[j - 1]),此时相当于t要删除元素,t如果把当前元素t[j - 1]删除,那么dp[i][j] 的数值就是 看s[i - 1]与 t[j - 2]的比较结果了,即:dp[i][j] = dp[i][j - 1];
        // 初始化:
        // 从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],所以dp[0][0]和dp[i][0]是一定要初始化的。
        // dp[i][0] 表示以下标i-1为结尾的字符串,与空字符串的相同子序列长度,所以为0. dp[0][j]同理。
        // 遍历顺序:从上到下,从左到右
        if (s.size() > t.size()) {
            return false;
        }
        if (s.empty()) {
            return true;
        }
        vector<vector<int>> dp(s.size() + 1, vector<int>(t.size() + 1, 0));
        for (int i = 1; i <= s.size(); ++i) {
            for (int j = 1; j <= t.size(); ++j) {
                if (s[i - 1] == t[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = dp[i][j - 1];
                }
            }
        }
        return dp.back().back() == s.size();
    }
};

0115.不同的子序列

链接:0115.不同的子序列

参考:代码随想录

这题中间计算会溢出。。。

dp数组含义

dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]

递推公式

这一类问题,基本是要分析两种情况

  • s[i - 1]t[j - 1]相等
  • s[i - 1]t[j - 1]不相等

s[i - 1]t[j - 1]相等时,dp[i][j]可以有两部分组成。

一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]

一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]

为什么还要考虑 不用s[i - 1]来匹配,都相同了指定要匹配啊。

例如: s:bagg 和 t:bag ,s[3]t[2]是相同的,但是字符串s也可以不用s[3]来匹配,即用s[0]s[1]s[2]组成的bag。

当然也可以用s[3]来匹配,即:s[0]s[1]s[3]组成的bag。

所以当s[i - 1]t[j - 1]相等时,dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]

s[i - 1]t[j - 1]不相等时,dp[i][j]只有一部分组成,不用s[i - 1]来匹配,即:dp[i - 1][j]。所以递推公式为:dp[i][j] = dp[i - 1][j]

初始化

从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][0]dp[0][j]是一定要初始化的。

每次当初始化的时候,都要回顾一下dp[i][j]的定义,不要凭感觉初始化。

dp[i][0]表示什么呢?

dp[i][0] 表示:以i-1为结尾的s可以随便删除元素,出现空字符串的个数。

那么dp[i][0]一定都是1,因为也就是把以i-1为结尾的s,删除所有元素,出现空字符串的个数就是1。

再来看dp[0][j]dp[0][j]:空字符串s可以随便删除元素,出现以j-1为结尾的字符串t的个数。

那么dp[0][j]一定都是0,s如论如何也变成不了t。

最后就要看一个特殊位置了,即:dp[0][0] 应该是多少。

dp[0][0]应该是1,空字符串s,可以删除0个元素,变成空字符串t。

class Solution {
public:
    int numDistinct(string s, string t)
    {
        if (s.size() < t.size()) {
            return 0;
        }
        if (t.empty()) {
            return 1;
        }
        vector<vector<int>> dp(s.size() + 1, vector<int>(t.size() + 1, 0));
        for (int i = 0; i < dp.size(); ++i) {
            dp[i][0] = 1;
        }
        for (int j = 1; j < dp[0].size(); ++j) {
            dp[0][j] = 0;
        }
        for (int i = 1; i <= s.size(); ++i) {
            for (int j = 1; j <= t.size(); ++j) {
                if (s[i - 1] == t[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
                } else {
                    dp[i][j] = dp[i - 1][j];
                }
            }
        }
        zwn::outputIntArrArr(dp);
        return dp.back().back();
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值