Gecco学习笔记(十二)

本文是Gecco学习笔记的第十二部分,主要讨论了如何使用@Href(click=true)的click属性进行深度抓取,并介绍了商品列表的持久化处理,包括通过控制台输出和利用Spring进行pipeline开发。此外,还讲解了JD列表页的分页抓取策略,通过替换page参数实现多页抓取。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2021SC@SDUSC

接上篇

public class ProductBrief implements HtmlBean {

	private static final long serialVersionUID = -377053120283382723L;

	@Attr("data-sku")
	@HtmlField(cssPath=".j-sku-item")
	private String code;
	
	@Text
	@HtmlField(cssPath=".p-name> a > em")
	private String title;
	
	@Image({"data-lazy-img", "src"})
	@HtmlField(cssPath=".p-img > a > img")
	private String preview;
	
	@Href(click=true)
	@HtmlField(cssPath=".p-name > a")
	private String detailUrl;

	public String getTitle() {
		return title;
	}

	public void setTitle(String title) {
		this.title = title;
	}

	public String getPreview() {
		return preview;
	}

	public void setPreview(String preview) {
		this.preview = preview;
	}

	public String getDetailUrl() {
		return detailUrl;
	}

	public void setDetailUrl(String detailUrl) {
		this.detailUrl = detailUrl;
	}

	public String getCode() {
		return code;
	}

	public void setCode(String code) {
		this.code = code;
	}
	
}

这里需要说明一下@Href(click=true)的click属性,click属性形象的说明了,这个链接我们希望gecco继续点击抓取。对于增加了click=true的链接,gecco会自动加入下载队列中,不需要在手动调用SchedulerContext.into()增加。ProductList抓取完成后一般需要进行持久化,也就是将商品的基本信息入库,入库的方式有很多种,gecco支持整合spring,可以利用spring进行pipeline的开发。本篇是进行了控制台输出。ProductList的业务处理还有一个很重要的任务,就是对分页的处理,列表页通常都有很多页,如果需要全部抓取,我们需要将下一页的链接入抓取队列。

@PipelineName("productListPipeline")
public class ProductListPipeline implements Pipeline<ProductList> {

	@Override
	public void process(ProductList productList) {
		HttpRequest currRequest = productList.getRequest();
		//下一页继续抓取
		int currPage = productList.getCurrPage();
		int nextPage = currPage + 1;
		int totalPage = productList.getTotalPage();
		if(nextPage <= totalPage) {
			String nextUrl = "";
			String currUrl = currRequest.getUrl();
			if(currUrl.indexOf("page=") != -1) {
				nextUrl = StringUtils.replaceOnce(currUrl, "page=" + currPage, "page=" + nextPage);
			} else {
				nextUrl = currUrl + "&" + "page=" + nextPage;
			}
			SchedulerContext.into(currRequest.subRequest(nextUrl));
		}
	}

}

JD的列表页通过page参数来指定页码,我们通过替换page参数达到分页抓取的目的。至此,所有的商品的列表信息都已经可以正常抓取了。

内容概要:本文档详细介绍了在三台CentOS 7服务器(IP地址分别为192.168.0.157、192.168.0.158和192.168.0.159)上安装和配置Hadoop、Flink及其他大数据组件(如Hive、MySQL、Sqoop、Kafka、Zookeeper、HBase、Spark、Scala)的具体步骤。首先,文档说明了环境准备,包括配置主机名映射、SSH免密登录、JDK安装等。接着,详细描述了Hadoop集群的安装配置,包括SSH免密登录、JDK配置、Hadoop环境变量设置、HDFS和YARN配置文件修改、集群启动与测试。随后,依次介绍了MySQL、Hive、Sqoop、Kafka、Zookeeper、HBase、Spark、Scala和Flink的安装配置过程,包括解压、环境变量配置、配置文件修改、服务启动等关键步骤。最后,文档提供了每个组件的基本测试方法,确保安装成功。 适合人群:具备一定Linux基础和大数据组件基础知识的运维人员、大数据开发工程师以及系统管理员。 使用场景及目标:①为大数据平台建提供详细的安装指南,确保各组件能够顺利安装和配置;②帮助技术人员快速掌握Hadoop、Flink等大数据组件的安装与配置,提升工作效率;③适用于企业级大数据平台的建与维护,确保集群稳定运行。 其他说明:本文档不仅提供了详细的安装步骤,还涵盖了常见的配置项解释和故障排查建议。建议读者在安装过程中仔细阅读每一步骤,并根据实际情况调整配置参数。此外,文档中的命令和配置文件路径均为示例,实际操作时需根据具体环境进行适当修改。
在无线通信领域,天线阵列设计对于信号传播方向和覆盖范围的优化至关重要。本题要求设计一个广播电台的天线布局,形成特定的水平面波瓣图,即在东北方向实现最大辐射强度,在正东到正北的90°范围内辐射衰减最小且无零点;而在其余270°范围内允许出现零点,且正西和西南方向必须为零。为此,设计了一个由4个铅垂铁塔组成的阵列,各铁塔上的电流幅度相等,相位关系可自由调整,几何布置和间距不受限制。设计过程如下: 第一步:构建初级波瓣图 选取南北方向上的两个点源,间距为0.2λ(λ为电磁波波长),形成一个端射阵。通过调整相位差,使正南方向的辐射为零,计算得到初始相位差δ=252°。为了满足西南方向零辐射的要求,整体相位再偏移45°,得到初级波瓣图的表达式为E1=cos(36°cos(φ+45°)+126°)。 第二步:构建次级波瓣图 再选取一个点源位于正北方向,另一个点源位于西南方向,间距为0.4λ。调整相位差使西南方向的辐射为零,计算得到相位差δ=280°。同样整体偏移45°,得到次级波瓣图的表达式为E2=cos(72°cos(φ+45°)+140°)。 最终组合: 将初级波瓣图E1和次级波瓣图E2相乘,得到总阵的波瓣图E=E1×E2=cos(36°cos(φ+45°)+126°)×cos(72°cos(φ+45°)+140°)。通过编程实现计算并绘制波瓣图,可以看到三个阶段的波瓣图分别对应初级波瓣、次级波瓣和总波瓣,最终得到满足广播电台需求的总波瓣图。实验代码使用MATLAB编写,利用polar函数在极坐标下绘制波瓣图,并通过subplot分块显示不同阶段的波瓣图。这种设计方法体现了天线阵列设计的基本原理,即通过调整天线间的相对位置和相位关系,控制电磁波的辐射方向和强度,以满足特定的覆盖需求。这种设计在雷达、卫星通信和移动通信基站等无线通信系统中得到了广泛应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值