提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
前言
大家好,今天要来简单分析下task2的相关概念以及代码,并且记录下自己的学习笔记。task2官方链接
一、task2做了什么?
首先,task2仍然使用Seq2Seq模型,但是在数据处理上使用了Spacy对英文分词以及 jieba 对中文分词,同时还使用了Spacy中的预训练语言模型en_core_web_trf。
二、相关技术介绍
1.Spacy
Spacy是一个NLP领域的文本预处理Python库,包括分词(Tokenization)、词性标注(Part-of-speech Tagging, POS Tagging)、依存分析(Dependency Parsing)、词形还原(Lemmatization)、句子边界检测(Sentence Boundary Detection,SBD)、命名实体识别(Named Entity Recognition, NER)等功能。
Spacy的安装比较方便,只需要执行以下代码即可
pip install spacy -i https://pypi.tuna.tsinghua.edu.cn/simple
然后执行命令下载en_core_Web_trf模型
python -m spacy download en_core_web_trf
不过个人建议直接去github手动下载包
官方链接
随便哪个都行,然后执行
pip install en_core_web_trf-3.7.3-py3-none-any.whl 或者en_core_web_trf-3.7.3.tar.gz
然后我们来尝试加载下模型
import spacy # 导包
# 加载模型
nlp = spacy.load("en_core_web_sm")
# 使用模型,传入句子即可
doc = nlp("Apple is looking at buying U.K. startup for $1 billion")
# 获取分词结果
print([token.text for token in doc])
输出为
['Apple', 'is', 'looking', 'at', 'buying', 'U.K.', 'startup', 'for', '$', '1', 'billion']
如果运行后有像我这样的错误
TypeError: ForwardRef._evaluate() missing 1 required keyword-only argument: 'recursive_guard'
那么可以先卸载,然后直接在pycharm的设置中找到python解释器手动安装,然后下载模型即可。(注意版本需要对应)
另外Spacy也有中文的预训练模型,开头是zh,大家可以自行探索。
2.数据预处理
所谓数据预处理就对数据集进行清理、标准化和转换,以达到更好的训练效果。这里只列出一些常用的处理方式,具体的需要根据实际来设计。
- 数据清洗
去除无关信息,比如HTML标签、特殊字符等,比如上一篇中出现的括号中的拟声词:(掌声)、(马嘶鸣) - 规范化
- 分句分段
将长文本分割成句子或段落,便于处理和训练。 - 分词
将句子分解成单词或词素(构成单词的基本组成部分,一个词素可以是一个完整的单词,也可以是单词的一部分,但每一个词素都至少携带一部分语义或语法信息),这是NLP中最基本的步骤之一。 - 统一格式
转换所有文本为小写,确保一致性;标准化日期、数字等格式。
- 构建词汇表和词向量
从训练数据中收集所有出现过的词汇,构建词汇表,并为每个词分配一个唯一的索引。
使用预训练的词向量或自己训练词向量,将词汇表中的词映射到高维空间中的向量,以捕捉语义信息(当前大模型领域训练的 embedding 模型就是用来完成此任务的)。 - 序列填充和截断
- 序列截断:限制输入序列的长度,过长的序列可能增加计算成本,同时也可能包含冗余信息。
- 序列填充:将所有序列填充至相同的长度,便于批量处理。通常使用标记填充
- 添加特殊标记
- 序列开始和结束标记:在序列两端添加(Sequence Start)和(Sequence End)标记,帮助模型识别序列的起始和结束。
- 未知词标记:为不在词汇表中的词添加(Unknown)标记,使模型能够处理未见过的词汇。
这就解释了上一篇中这一段是在干啥
def __getitem__(self, idx):
en, zh = self.data[idx]
en_tensor = torch.tensor([self.en_word2idx.get(word, self.en_word2idx['<sos>']) for word in self.en_tokenizer(en)] + [self.en_word2idx['<eos>']])
zh_tensor = torch.tensor([self.zh_word2idx.get(word, self.zh_word2idx['<sos>']) for word in self.zh_tokenizer(zh)] + [self.zh_word2idx['<eos>']])
return en_tensor, zh_tensor
- 数据增强
- 随机替换或删除词:在训练数据中随机替换或删除一些词,增强模型的鲁棒性。
- 同义词替换:使用同义词替换原文中的词,增加训练数据的多样性。
3.编码器-解码器模型
GRU编码器和解码器在上一篇中我有简单介绍,这次对RNN模型进行一些补充。
编码器的内容和上一篇中的Seq2Seq模型一样,对于解码器增加两个公式
z
t
z_{t}
zt是解码器的输入,
s
t
s_{t}
st是隐藏状态,公式一表示t时刻的隐藏状态
s
t
s_{t}
st是由解码器通过调用上一时刻t-1的输入
z
t
−
1
z_{t-1}
zt−1和隐藏状态
s
t
−
1
s_{t-1}
st−1进行线性变换通过tanh激活函数生成。也就是说
s
t
s_{t}
st与上一时刻的输入
z
t
−
1
z_{t-1}
zt−1、隐藏状态
s
t
−
1
s_{t-1}
st−1有关。
公式二是在输出层使用Softmax函数对数据进行归一化处理将数据限制在[0,1]之间。
4. 词嵌入Embedding
将一个词转换成向量的操作,每个词在词向量表中都有对应的向量表示,我们需要做的就是在表中找到它,然后替换。当然每个词向量的维数都是固定的,一般都是300维,参考自己的词表。这个操作也被叫做Embedding lookup(词嵌入查找)。
5. 注意力机制
当一个句子被输入到计算机时,程序会将每个词视为一个token t ,每个token都有一个词嵌入 A 。但是这些词嵌入没有上下文。注意力机制的思想是应用某种权重或相似性,让初始 词嵌入 A 获得更多上下文信息,从而获得最终带上下文的词嵌入 Y 。
我们用这一思想来找到权重向量 W ,通过将词嵌入相乘(点积)以获得更多上下文。
- 发现权重
这实际上就是向量 A A A与其转置向量 A T A^{T} AT进行点积获取权重矩阵,然后可以通过Softmax进行归一化处理 - 获取带上下文的词嵌入
我们再把权重点积向量 A A A,获取上下文信息Y。
具体的我目前理解不多,大家可以参考原文链接
三、代码
接下来我们来看看代码,我这里用的是第二个版本的task2代码,第一个版本输出是有问题的。
先导包
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.nn.utils import clip_grad_norm_
from torch.utils.data import Dataset, DataLoader
from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
from typing import List, Tuple
import jieba
import random
import sacrebleu
import time
import math
进行数据预处理
# 定义tokenizer
en_tokenizer = get_tokenizer('spacy', language='en_core_web_trf')
zh_tokenizer = lambda x: list(jieba.cut(x)) # 使用jieba分词
# 读取数据函数
def read_data(file_path: str) -> List[str]:
with open(file_path, 'r', encoding='utf-8') as f:
return [line.strip() for line in f]
# 数据预处理函数
def preprocess_data(en_data: List[str], zh_data: List[str]) -> List[Tuple[List[str], List[str]]]:
processed_data = []
for en, zh in zip(en_data, zh_data):
en_tokens = en_tokenizer(en.lower())[:MAX_LENGTH]
zh_tokens = zh_tokenizer(zh)[:MAX_LENGTH]
if en_tokens and zh_tokens: # 确保两个序列都不为空
processed_data.append((en_tokens, zh_tokens))
return processed_data
# 构建词汇表
def build_vocab(data: List[Tuple[List[str], List[str]]]):
en_vocab = build_vocab_from_iterator(
(en for en, _ in data),
specials=['<unk>', '<pad>', '<bos>', '<eos>']
)
zh_vocab = build_vocab_from_iterator(
(zh for _, zh in data),
specials=['<unk>', '<pad>', '<bos>', '<eos>']
)
en_vocab.set_default_index(en_vocab['<unk>'])
zh_vocab.set_default_index(zh_vocab['<unk>'])
return en_vocab, zh_vocab
# 处理数据集
class TranslationDataset(Dataset):
def __init__(self, data: List[Tuple[List[str], List[str]]], en_vocab, zh_vocab):
self.data = data
self.en_vocab = en_vocab
self.zh_vocab = zh_vocab
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
en, zh = self.data[idx]
en_indices = [self.en_vocab['<bos>']] + [self.en_vocab[token] for token in en] + [self.en_vocab['<eos>']]
zh_indices = [self.zh_vocab['<bos>']] + [self.zh_vocab[token] for token in zh] + [self.zh_vocab['<eos>']]
return en_indices, zh_indices
对数据进行填充
def collate_fn(batch):
en_batch, zh_batch = [], []
for en_item, zh_item in batch:
if en_item and zh_item: # 确保两个序列都不为空
# print("都不为空")
en_batch.append(torch.tensor(en_item))
zh_batch.append(torch.tensor(zh_item))
else:
print("存在为空")
if not en_batch or not zh_batch: # 如果整个批次为空,返回空张量
return torch.tensor([]), torch.tensor([])
# src_sequences = [item[0] for item in batch]
# trg_sequences = [item[1] for item in batch]
en_batch = nn.utils.rnn.pad_sequence(en_batch, batch_first=True, padding_value=en_vocab['<pad>'])
zh_batch = nn.utils.rnn.pad_sequence(zh_batch, batch_first=True, padding_value=zh_vocab['<pad>'])
# en_batch = pad_sequence(en_batch, batch_first=True, padding_value=en_vocab['<pad>'])
# zh_batch = pad_sequence(zh_batch, batch_first=True, padding_value=zh_vocab['<pad>'])
return en_batch, zh_batch
# 数据加载函数
def load_data(train_path: str, dev_en_path: str, dev_zh_path: str, test_en_path: str):
# 读取训练数据
train_data = read_data(train_path)
train_en, train_zh = zip(*(line.split('\t') for line in train_data))
# 读取开发集和测试集
dev_en = read_data(dev_en_path)
dev_zh = read_data(dev_zh_path)
test_en = read_data(test_en_path)
# 预处理数据
train_processed = preprocess_data(train_en, train_zh)
dev_processed = preprocess_data(dev_en, dev_zh)
test_processed = [(en_tokenizer(en.lower())[:MAX_LENGTH], []) for en in test_en if en.strip()]
# 构建词汇表
global en_vocab, zh_vocab
en_vocab, zh_vocab = build_vocab(train_processed)
# 创建数据集
train_dataset = TranslationDataset(train_processed, en_vocab, zh_vocab)
dev_dataset = TranslationDataset(dev_processed, en_vocab, zh_vocab)
test_dataset = TranslationDataset(test_processed, en_vocab, zh_vocab)
from torch.utils.data import Subset
# 假设你有10000个样本,你只想用前1000个样本进行测试
indices = list(range(N))
train_dataset = Subset(train_dataset, indices)
# 创建数据加载器
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_fn, drop_last=True)
dev_loader = DataLoader(dev_dataset, batch_size=BATCH_SIZE, collate_fn=collate_fn, drop_last=True)
test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, collate_fn=collate_fn, drop_last=True)
return train_loader, dev_loader, test_loader, en_vocab, zh_vocab
# 数据填充方法
def pad_sequence(batch,batch_first,padding_value):
# 对源语言和目标语言序列分别进行填充
src_sequences = [item[0] for item in batch]
trg_sequences = [item[1] for item in batch]
src_padded = nn.utils.rnn.pad_sequence(src_sequences, batch_first=True, padding_value=en_vocab['<pad>'])
trg_padded = nn.utils.rnn.pad_sequence(trg_sequences, batch_first=True, padding_value=zh_vocab['<pad>'])
return src_padded, trg_padded
构建模型
class Encoder(nn.Module):
def __init__(self, input_dim, emb_dim, hid_dim, n_layers, dropout):
super().__init__()
self.hid_dim = hid_dim
self.n_layers = n_layers
self.embedding = nn.Embedding(input_dim, emb_dim)
self.gru = nn.GRU(emb_dim, hid_dim, n_layers, dropout=dropout, batch_first=True)
self.dropout = nn.Dropout(dropout)
def forward(self, src):
# src = [batch size, src len]
embedded = self.dropout(self.embedding(src))
# embedded = [batch size, src len, emb dim]
outputs, hidden = self.gru(embedded)
# outputs = [batch size, src len, hid dim * n directions]
# hidden = [n layers * n directions, batch size, hid dim]
return outputs, hidden
# 注意力机制实现
class Attention(nn.Module):
def __init__(self, hid_dim):
super().__init__()
self.attn = nn.Linear(hid_dim * 2, hid_dim)
self.v = nn.Linear(hid_dim, 1, bias=False)
def forward(self, hidden, encoder_outputs):
# hidden = [1, batch size, hid dim]
# encoder_outputs = [batch size, src len, hid dim]
batch_size = encoder_outputs.shape[0]
src_len = encoder_outputs.shape[1]
hidden = hidden.repeat(src_len, 1, 1).transpose(0, 1)
# hidden = [batch size, src len, hid dim]
energy = torch.tanh(self.attn(torch.cat((hidden, encoder_outputs), dim=2)))
# energy = [batch size, src len, hid dim]
attention = self.v(energy).squeeze(2)
# attention = [batch size, src len]
return F.softmax(attention, dim=1)
class Decoder(nn.Module):
def __init__(self, output_dim, emb_dim, hid_dim, n_layers, dropout, attention):
super().__init__()
self.output_dim = output_dim
self.hid_dim = hid_dim
self.n_layers = n_layers
self.attention = attention
self.embedding = nn.Embedding(output_dim, emb_dim)
self.gru = nn.GRU(hid_dim + emb_dim, hid_dim, n_layers, dropout=dropout, batch_first=True)
self.fc_out = nn.Linear(hid_dim * 2 + emb_dim, output_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, input, hidden, encoder_outputs):
# input = [batch size, 1]
# hidden = [n layers, batch size, hid dim]
# encoder_outputs = [batch size, src len, hid dim]
input = input.unsqueeze(1)
embedded = self.dropout(self.embedding(input))
# embedded = [batch size, 1, emb dim]
a = self.attention(hidden[-1:], encoder_outputs)
# a = [batch size, src len]
a = a.unsqueeze(1)
# a = [batch size, 1, src len]
weighted = torch.bmm(a, encoder_outputs)
# weighted = [batch size, 1, hid dim]
rnn_input = torch.cat((embedded, weighted), dim=2)
# rnn_input = [batch size, 1, emb dim + hid dim]
output, hidden = self.gru(rnn_input, hidden)
# output = [batch size, 1, hid dim]
# hidden = [n layers, batch size, hid dim]
embedded = embedded.squeeze(1)
output = output.squeeze(1)
weighted = weighted.squeeze(1)
prediction = self.fc_out(torch.cat((output, weighted, embedded), dim=1))
# prediction = [batch size, output dim]
return prediction, hidden
class Seq2Seq(nn.Module):
def __init__(self, encoder, decoder, device):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.device = device
def forward(self, src, trg, teacher_forcing_ratio=0.5):
# src = [batch size, src len]
# trg = [batch size, trg len]
batch_size = src.shape[0]
trg_len = trg.shape[1]
trg_vocab_size = self.decoder.output_dim
outputs = torch.zeros(batch_size, trg_len, trg_vocab_size).to(self.device)
encoder_outputs, hidden = self.encoder(src)
input = trg[:, 0]
for t in range(1, trg_len):
output, hidden = self.decoder(input, hidden, encoder_outputs)
outputs[:, t] = output
teacher_force = random.random() < teacher_forcing_ratio
top1 = output.argmax(1)
input = trg[:, t] if teacher_force else top1
return outputs
# 初始化模型
def initialize_model(input_dim, output_dim, emb_dim, hid_dim, n_layers, dropout, device):
attn = Attention(hid_dim)
enc = Encoder(input_dim, emb_dim, hid_dim, n_layers, dropout)
dec = Decoder(output_dim, emb_dim, hid_dim, n_layers, dropout, attn)
model = Seq2Seq(enc, dec, device).to(device)
return model
定义优化器,这里使用的是固定学习率,也可以使用动态学习率来得到更好的效果
# 定义优化器
def initialize_optimizer(model, learning_rate=0.001):
return optim.Adam(model.parameters(), lr=learning_rate)
# 运行时间
def epoch_time(start_time, end_time):
elapsed_time = end_time - start_time
elapsed_mins = int(elapsed_time / 60)
elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
return elapsed_mins, elapsed_secs
def train(model, iterator, optimizer, criterion, clip):
model.train()
epoch_loss = 0
for i, batch in enumerate(iterator):
#print(f"Training batch {i}")
src, trg = batch
#print(f"Source shape before: {src.shape}, Target shape before: {trg.shape}")
if src.numel() == 0 or trg.numel() == 0:
#print("Empty batch detected, skipping...")
continue # 跳过空的批次
src, trg = src.to(DEVICE), trg.to(DEVICE)
optimizer.zero_grad()
output = model(src, trg)
output_dim = output.shape[-1]
output = output[:, 1:].contiguous().view(-1, output_dim)
trg = trg[:, 1:].contiguous().view(-1)
loss = criterion(output, trg)
loss.backward()
clip_grad_norm_(model.parameters(), clip)
optimizer.step()
epoch_loss += loss.item()
print(f"Average loss for this epoch: {epoch_loss / len(iterator)}")
return epoch_loss / len(iterator)
def evaluate(model, iterator, criterion):
model.eval()
epoch_loss = 0
with torch.no_grad():
for i, batch in enumerate(iterator):
#print(f"Evaluating batch {i}")
src, trg = batch
if src.numel() == 0 or trg.numel() == 0:
continue # 跳过空批次
src, trg = src.to(DEVICE), trg.to(DEVICE)
output = model(src, trg, 0) # 关闭 teacher forcing
output_dim = output.shape[-1]
output = output[:, 1:].contiguous().view(-1, output_dim)
trg = trg[:, 1:].contiguous().view(-1)
loss = criterion(output, trg)
epoch_loss += loss.item()
return epoch_loss / len(iterator)
# 翻译函数
def translate_sentence(src_indexes, src_vocab, tgt_vocab, model, device, max_length=50):
model.eval()
src_tensor = src_indexes.unsqueeze(0).to(device) # 添加批次维度
# with torch.no_grad():
# encoder_outputs = model.encoder(model.positional_encoding(model.src_embedding(src_tensor) * math.sqrt(model.d_model)))
trg_indexes = [tgt_vocab['<bos>']]
for i in range(max_length):
trg_tensor = torch.LongTensor(trg_indexes).unsqueeze(0).to(device)
# print("src_tensor:",src_tensor)
# print("trg_tensor:",trg_tensor)
with torch.no_grad():
output = model(src_tensor, trg_tensor)
pred_token = output.argmax(2)[:, -1].item()
trg_indexes.append(pred_token)
if pred_token == tgt_vocab['<eos>']:
break
trg_tokens = [tgt_vocab.get_itos()[i] for i in trg_indexes]
return trg_tokens[1:-1] # 移除<bos>和<eos>标记
# 主训练循环
def train_model(model, train_iterator, valid_iterator, optimizer, criterion, N_EPOCHS = 10, CLIP = 1, save_path = '../model/best-model.pt'):
best_valid_loss = float('inf')
for epoch in range(N_EPOCHS):
start_time = time.time()
#print(f"Starting Epoch {epoch + 1}")
train_loss = train(model, train_iterator, optimizer, criterion, CLIP)
valid_loss = evaluate(model, valid_iterator, criterion)
end_time = time.time()
epoch_mins, epoch_secs = epoch_time(start_time, end_time)
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save(model.state_dict(), save_path)
print(f'Epoch: {epoch+1:02} | Time: {epoch_mins}m {epoch_secs}s')
print(f'\tTrain Loss: {train_loss:.3f} | Train PPL: {math.exp(train_loss):7.3f}')
print(f'\t Val. Loss: {valid_loss:.3f} | Val. PPL: {math.exp(valid_loss):7.3f}')
开始训练,注意这里DEVICE中的cuda要设置为0,还有BATCH_SIZE要修改成1,这里设置最大句子长度为100是因为数据集中的句子统计结果有90%长度都小于100,当然如果想覆盖所有句子,可以对长度不够的句子做填充,来保证数据长度统一。
另外,本次训练保存的是最优模型,防止中间训练时有不好的循环出现影响最后训练效果。
# 定义常量
MAX_LENGTH = 100 # 最大句子长度
BATCH_SIZE = 1
DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
N = 2000 # 采样训练集的数量
train_path = '../dataset/train.txt'
dev_en_path = '../dataset/dev_en.txt'
dev_zh_path = '../dataset/dev_zh.txt'
test_en_path = '../dataset/test_en.txt'
train_loader, dev_loader, test_loader, en_vocab, zh_vocab = load_data(
train_path, dev_en_path, dev_zh_path, test_en_path
)
print(f"英语词汇表大小: {len(en_vocab)}")
print(f"中文词汇表大小: {len(zh_vocab)}")
print(f"训练集大小: {len(train_loader.dataset)}")
print(f"开发集大小: {len(dev_loader.dataset)}")
print(f"测试集大小: {len(test_loader.dataset)}")
# 主函数
if __name__ == '__main__':
N_EPOCHS = 30
CLIP=1
# 模型参数
INPUT_DIM = len(en_vocab)
OUTPUT_DIM = len(zh_vocab)
EMB_DIM = 128
HID_DIM = 256
N_LAYERS = 2
DROPOUT = 0.5
# 初始化模型
model = initialize_model(INPUT_DIM, OUTPUT_DIM, EMB_DIM, HID_DIM, N_LAYERS, DROPOUT, DEVICE)
print(f'The model has {sum(p.numel() for p in model.parameters() if p.requires_grad):,} trainable parameters')
# 定义损失函数
criterion = nn.CrossEntropyLoss(ignore_index=zh_vocab['<pad>'])
# 初始化优化器
optimizer = initialize_optimizer(model)
# 训练模型
save_path = '../model/best-model.pt'
train_model(model, train_loader, dev_loader, optimizer, criterion, N_EPOCHS, CLIP, save_path = save_path)
print(f"训练完成!模型已保存到:{save_path}")
在测试集上进行翻译试试
save_dir = '../results/submit_task2.txt'
with open(save_dir, 'w') as f:
translated_sentences = []
for batch in test_loader: # 遍历所有数据
src, _ = batch
src = src.to(DEVICE)
translated = translate_sentence(src[0], en_vocab, zh_vocab, model, DEVICE, max_length=50) # 翻译结果,max_length生成翻译的最大长度
#print(translated)
results = "".join(translated)
f.write(results + '\n') # 将结果写入文件
print(f"翻译完成,结果已保存到{save_dir}")
我们看下结果
可以看到在接近20轮的时候损失已经基本稳定在3.3左右了。
而BLEU-4的分数比task1高了不少
翻译的结果还是一个人工智障((lll¬ω¬))。。
让我们来看看讯飞的评分
甚至比task1还要低了/(ㄒoㄒ)/~~
总结
本文就先到这里,具体是什么原因导致的评分很低我还没研究出来,等研究出来了再做更新。