A sequence of N positive integers (10 < N < 100 000), each of them less than or equal 10000, and a positive integer S (S < 100 000 000) are given. Write a program to find the minimal length of the subsequence of consecutive elements of the sequence, the sum of which is greater than or equal to S.
给出了 N 个正整数 (10 < N < 100 000) 的序列,每个正整数小于或等于 10000,以及一个正整数 S (S < 100 000 000)。编写一个程序以查找序列中连续元素的子序列的最小长度,其总和大于或等于 S。
Input
The first line is the number of test cases. For each test case the program has to read the numbers N and S, separated by an interval, from the first line. The numbers of the sequence are given in the second line of the test case, separated by intervals. The input will finish with the end of file.
第一行是测试用例的数量。对于每个测试用例,程序必须从第一行读取数字 N 和 S,以间隔分隔。序列的编号在测试用例的第二行中给出,用间隔分隔。输入将以文件末尾结束。
Output
For each the case the program has to print the result on separate line of the output file.if no answer, print 0.
对于每种情况,程序都必须在输出文件的单独行上打印结果。如果没有答案,则打印 0。
Sample
Input | Output |
---|---|
2
10 15
5 1 3 5 10 7 4 9 2 8
5 11
1 2 3 4 5 | 2
3 |
解题思路:
利用尺取法,当[l,r]区间和大于等于S,即我们让l右移动,判断它是否依旧满足,直到不满足条件,这样就可以得到区间[l,r]最小长度,我们依次遍历,就可以得到答案了。
题解
#include<iostream>
#include <cstdio>
using namespace std;
const int N=2e6+5;
int a[N];
int n;
int main(){
cin>>n;
int m,s;
while(n--){
cin>>m>>s;
int ans=N,l,sum=0;
l=1;
for(int i=1;i<=m;i++){
cin>>a[i];
sum+=a[i];
while(l<=i&&sum-a[l]>=s){ //a[i]到a[l+1]的总和满足s
sum-=a[l++]; //将a[l]去掉,l右移
}
if(sum>=s){
int k=i-l+1;
if(ans>k) ans=k;
}
}
if(ans==N) cout<<0<<endl;
else cout<<ans<<endl;
}
}
时间复杂度:O(n*m)