HDU 4804 Campus Design(状压DP)

题目链接
题意

给你n行m列矩阵,有的地方有地砖,你有 1 ∗ 1 1*1 11 地砖和 1 ∗ 2 1*2 12地砖,求放 1 ∗ 1 1*1 11地砖数在 [ c , d ] [c,d] [cd]区间内铺满地板的方案数。

思路

一看感觉比普通贴地砖状态多了一个记录 1 ∗ 1 1*1 11使用次数的状态,然后其他无太大区别,转移方程需要考虑一些情况。
d p [ 枚 举 位 置 ] [ 包 括 本 身 的 连 续 m 个 地 砖 状 态 ] [ 已 经 放 了 多 少 个 1 ∗ 1 ] = 方 案 数 dp[枚举位置][包括本身的连续m个地砖状态][已经放了多少个1*1]=方案数 dp[][m][11]=
转移方程考虑几种情况,枚举点是否已有砖块,上一排这一列有无砖块,前一个有无砖块。详见代码。

写代码20分钟,debug1小时,枚举位置由于只和前一位有关,可以滚动数组优化空间,之前没优化MLE了,滚动后代码反而更加简洁我佛了。

代码
#include <bits/stdc++.h>
using namespace std;

#define deltop ((k^(1<<(m-1)))<<1) // 去头左移1

char s[105][15];
int n, m, c, d;
int a[105][15];
int dp[2][1<<10][25], mod = 1e9+7;

int main() {
    while(~scanf("%d%d%d%d",&n,&m,&c,&d)) {
        for(int i = 0; i < n; ++i) {
            scanf("%s",s[i]);
            for(int j = 0; j < m; ++j) a[i][j] = s[i][j]-'0';
        }
        int cur = 0;
        memset(dp,0,sizeof(dp));
        dp[0][(1<<m)-1][0] = 1;
        for(int i = 0; i < n; ++i) {
            for(int j = 0; j < m; ++j) {
                cur ^= 1;
                memset(dp[cur],0,sizeof(dp[cur]));
                for(int k = (1<<m)-1; ~k; --k) {
                    for(int q = 0; q <= d; ++q) {
                        if(!dp[cur^1][k][q]) continue;
                        if(a[i][j] == 0) { // 有墙
                            if((k&(1<<(m-1)))) { // 上面有墙
                                dp[cur][deltop|1][q] += dp[cur^1][k][q];
                                dp[cur][deltop|1][q] %= mod;
                            }
                        }
                        else { // i,j点没墙
                            if((k&(1<<(m-1)))) { // 上面有墙
                                // 放1个点
                                dp[cur][deltop|1][q+1] += dp[cur^1][k][q];
                                dp[cur][deltop|1][q+1] %= mod;

                                // 不放
                                dp[cur][deltop][q] += dp[cur^1][k][q];
                                dp[cur][deltop][q] %= mod;

                                if((k&1) == 0 && j > 0) { // 左边没墙
                                    dp[cur][deltop^3][q] += dp[cur^1][k][q];
                                    dp[cur][deltop^3][q] %= mod;
                                }
                            }
                            else { // 上面没墙竖着放
                                dp[cur][(k<<1)|1][q] += dp[cur^1][k][q];
                                dp[cur][(k<<1)|1][q] %= mod;
                            }
                        }
                    }
                }
            }
        }
        int ans = 0;
        for(int i = c; i <= d; ++i) ans = (ans+dp[cur][(1<<m)-1][i])%mod;
        printf("%d\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值