题目链接
题意
给你n行m列矩阵,有的地方有地砖,你有 1 ∗ 1 1*1 1∗1 地砖和 1 ∗ 2 1*2 1∗2地砖,求放 1 ∗ 1 1*1 1∗1地砖数在 [ c , d ] [c,d] [c,d]区间内铺满地板的方案数。
思路
一看感觉比普通贴地砖状态多了一个记录
1
∗
1
1*1
1∗1使用次数的状态,然后其他无太大区别,转移方程需要考虑一些情况。
d
p
[
枚
举
位
置
]
[
包
括
本
身
的
连
续
m
个
地
砖
状
态
]
[
已
经
放
了
多
少
个
1
∗
1
]
=
方
案
数
dp[枚举位置][包括本身的连续m个地砖状态][已经放了多少个1*1]=方案数
dp[枚举位置][包括本身的连续m个地砖状态][已经放了多少个1∗1]=方案数,
转移方程考虑几种情况,枚举点是否已有砖块,上一排这一列有无砖块,前一个有无砖块。详见代码。
写代码20分钟,debug1小时,枚举位置由于只和前一位有关,可以滚动数组优化空间,之前没优化MLE了,滚动后代码反而更加简洁我佛了。
代码
#include <bits/stdc++.h>
using namespace std;
#define deltop ((k^(1<<(m-1)))<<1) // 去头左移1
char s[105][15];
int n, m, c, d;
int a[105][15];
int dp[2][1<<10][25], mod = 1e9+7;
int main() {
while(~scanf("%d%d%d%d",&n,&m,&c,&d)) {
for(int i = 0; i < n; ++i) {
scanf("%s",s[i]);
for(int j = 0; j < m; ++j) a[i][j] = s[i][j]-'0';
}
int cur = 0;
memset(dp,0,sizeof(dp));
dp[0][(1<<m)-1][0] = 1;
for(int i = 0; i < n; ++i) {
for(int j = 0; j < m; ++j) {
cur ^= 1;
memset(dp[cur],0,sizeof(dp[cur]));
for(int k = (1<<m)-1; ~k; --k) {
for(int q = 0; q <= d; ++q) {
if(!dp[cur^1][k][q]) continue;
if(a[i][j] == 0) { // 有墙
if((k&(1<<(m-1)))) { // 上面有墙
dp[cur][deltop|1][q] += dp[cur^1][k][q];
dp[cur][deltop|1][q] %= mod;
}
}
else { // i,j点没墙
if((k&(1<<(m-1)))) { // 上面有墙
// 放1个点
dp[cur][deltop|1][q+1] += dp[cur^1][k][q];
dp[cur][deltop|1][q+1] %= mod;
// 不放
dp[cur][deltop][q] += dp[cur^1][k][q];
dp[cur][deltop][q] %= mod;
if((k&1) == 0 && j > 0) { // 左边没墙
dp[cur][deltop^3][q] += dp[cur^1][k][q];
dp[cur][deltop^3][q] %= mod;
}
}
else { // 上面没墙竖着放
dp[cur][(k<<1)|1][q] += dp[cur^1][k][q];
dp[cur][(k<<1)|1][q] %= mod;
}
}
}
}
}
}
int ans = 0;
for(int i = c; i <= d; ++i) ans = (ans+dp[cur][(1<<m)-1][i])%mod;
printf("%d\n",ans);
}
return 0;
}