所补题目
Description
你有一张某海域
N
×
N
N \times N
N×N 像素的照片,.
表示海洋、 #
表示陆地,如下所示:(输入实例)
.......
.##....
.##....
....##.
..####.
...###.
.......
其中 “上下左右” 四个方向上连在一起的一片陆地组成一座岛屿。例如上图就有
2
2
2 座岛屿。
由于全球变暖导致了海面上升,科学家预测未来几十年,岛屿边缘一个像素的范围会被海水淹没。具体来说如果一块陆地像素与海洋相邻(上下左右四个相邻像素中有海洋),它就会被淹没。
例如上图中的海域未来会变成如下样子:
.......
.......
.......
.......
....#..
.......
.......
请你计算:依照科学家的预测,照片中有多少岛屿会被完全淹没。
Input
第一行包含一个整数
N
N
N。
(
1
≤
N
≤
1000
)
(1 \le N \le 1000)
(1≤N≤1000)。
以下
N
N
N 行
N
N
N 列代表一张海域照片。
照片保证第
1
1
1 行、第
1
1
1 列、第
N
N
N 行、第
N
N
N 列的像素都是海洋。
Output
一个整数表示答案。
输入输出样例
见题目背景
输出
1
Hint
时限 1 秒, 256M。蓝桥杯 2018 年第九届省赛
三次解题
第一次解题
在第一次解题用了Python解题,结果2/8个测试点出现了段错误,最终72分。
f=(0,1),(1,0),(0,-1),(-1,0)
N=int(input())
sq=[0]*(N+1)
for i in range(N):
sq[i]=list(input()+'.')
sq[-1]='.'*(N+1)
count=0
def dfs(x0,y0):
flag=True
sq[x0][y0]=''
for dx,dy in f:
x,y=x0+dx,y0+dy
if sq[x][y]=='#':
dfs(x,y)
elif sq[x][y]=='.':#临海此块会被淹没
flag=False
if flag:
global state#整片岛将有留存
state=0
for i in range(N):
for j in range(N):
if sq[i][j]=='#':
state=1
dfs(i,j)
count+=state
print(count)
第二次解题
我本来以为是我剪枝的时候把哪个非法坐标忘剪了,但我怎么也想不出怎么会非法,我特意多加了一层边界(下标为₋₁或ᴺ)并设置为海域,以方便不用检查坐标是否在范围内,不过后来发现原来只是单纯的栈溢出爆栈了。
import sys
f=(0,1),(1,0),(0,-1),(-1,0)
N=int(input())
sys.setrecursionlimit(N*N)
sq=[0]*(N+1)
for i in range(N):
sq[i]=list(input()+'.')
sq[-1]='.'*(N+1)
count=0
def dfs(x0,y0):
flag=True
sq[x0][y0]=''
for dx,dy in f:
x,y=x0+dx,y0+dy
if sq[x][y]=='#':
dfs(x,y)
elif sq[x][y]=='.':#临海此块会被淹没
flag=False
if flag:
global state#整片岛将有留存
state=0
for i in range(N):
for j in range(N):
if sq[i][j]=='#':
state=1
dfs(i,j)
count+=state
print(count)
第三次解题
我是会纯C的,但是cpp完全没学过,虽然知道相当于只是一个扩展,但对于扩展的内容比如STL等等却是并无了解,而且由于专业原因Py用的多,对其语法风格更熟悉,所以很少用c做题,不过上面建议多用,就现学上了一点,由于是初学,内容可能有些简陋与误差,希望没事
#include<bits/stdc++.h>
using namespace std;
#define MAXN 1000+2
#include<stdio.h>
typedef pair<int,int>p_;
p_ f[4]={{0,1},{1,0},{0,-1},{-1,0}};
char sq[MAXN][MAXN];
void dfs(int x0,int y0,int*state)
{
bool flag=true;
sq[x0][y0]='\0';
int x,y;
for(int r=0;r<4;r++)
{
x=x0+f[r].first;
y=y0+f[r].second;
if (sq[x][y]=='#')
dfs(x,y,state);
else if(sq[x][y]=='.')//临海此块会被淹没
flag=false;
}
if(flag)
*state=0;//整片岛将有留存
}
int main()
{
int N,i,j,count=0,state;
scanf("%d\n",&N);
for(i=0;i<N+2;i++)
sq[0][i]=sq[N+1][i]=sq[i][0]=sq[i][N+1]='.';
for(i=1;i<=N;i++)
{
for(j=1;j<=N;j++)
scanf("%c",&sq[i][j]);
scanf("\n");
}
for(i=1;i<=N;i++)
for(j=1;j<=N;j++)
if(sq[i][j]=='#')
{
state=1;
dfs(i,j,&state);
count+=state;
}
printf("%d",count);
return 0;
}
所涉语法
手工扩栈
笔记:DFS算法是基本搜索算法之一,其主要有应用了递归(recursion)原理,递归算法实现需要运用栈数据结构进行,然而系统栈大小通常是有限定的如1000,尤其Python栈通常很小,虽然判题系统一般栈足够大,但是如果递归层数较多搜索较深,栈溢出会发生错误,sys库的getrecursionlimit函数可以获取限制的嵌套次数,可以用set方法进行修改手工扩栈至30w甚至100w,当然剪枝等减层方法仍是重要的。例题:C23A14B有奖问答3497
pair
头文件
虽然在算竟中我们常使用万能头,但在本地编译器中可能出错,所以这里还是标注所属。
#include<utility>
构造
pair<T1,T2>p(v1,v2)
pair<T1,T2>p=(v1,v2)
make_pair(v1,v2)//隐式构造
typedef pair<pair<int,int>,int>p_;//嵌套与简化
p_ f[4]={{0,1},{1,0},{0,-1},{-1,0}};//多组赋值划分
//p_ f[4]={(0,1),(1,0),(0,-1),(-1,0)};错误,不可直接类比(v1,v2)用法
调用成员
p.first;
p.second;
tie(name,ages)=make_pair("Sven",25);//一次性解包赋值
m.insert(pair<int,int>(1,10));//赋值于map容器中
比较
pair可以使用比较运算符,规则为优先比较first再比较second