- 博客(4706)
- 资源 (1)
- 收藏
- 关注
原创 如何构建一个真正可靠的AI Agent?
每个智能体在单独的 Git 分支中生成代码,AI 评判器根据质量、效率和错误倾向评估所有输出,以选择最佳实现。(即将到来的任务)。我们介绍的技术——如规划器-执行器架构、思维链、验证智能体、多个智能体和文件系统状态管理——是经过验证的构建块,以更高的延迟和费用为代价提高准确率。这里的技术构成了坚实的基础,但生产系统还有额外的考虑因素:错误处理、重试逻辑、速率限制、监控、安全性和可扩展性。完成多个编码任务的经历,观察到他们的自主智能体如何处理规划、执行和自我修正(这已是智能体系统中常见的模式)。
2026-02-03 09:57:46
331
原创 如何让 AI Agent 的记忆更像人类?
每隔几周,我们就会看到新的论文、框架和文章,每个都声称"解决"了 LLM 的记忆问题。在我们思考、感知或推理之前,我们就带着一种自我感,一种我们是谁的稳定、持久的表示。对人类来说,这包括核心信念("我是乐观的")、个性特征("我是情绪化的,而不是分析性的")和稳定事实("我住在班加罗尔")。一旦智能体能够反思自己的记忆,决定什么有帮助,什么没有帮助,以及学习什么,记忆就不再是被动存储,而成为推理的主动部分。智能体可以运行周期性的记忆巩固周期,决定什么成为核心记忆的一部分,什么移动到长期记忆,什么被删除。
2026-02-02 18:11:26
608
原创 <span class=“js_title_inner“>如何在 Cloudflare 平台上构建垂直微前端</span>
实际上发生的是,当请求通过我们的路由器Worker时,我们将请求传递给正确的服务绑定,并从中接收响应。对于我们的路由器Worker,我们定义一个额外的变量,包含以下数据,这样我们就知道哪些路径应该映射到哪些服务绑定。当它附加到我们的新路由器Worker时,它会自动处理移除前缀,这样服务就可以从自己定义的URL或通过我们的路由器Worker访问……这是一个实现细节的选择,目的是当Worker通过路由器Worker访问时,它可以清理URL来处理请求,就像它是从路由器Worker外部调用的一样。
2026-02-01 08:31:22
366
原创 如何在 Cloudflare 平台上构建垂直微前端
实际上发生的是,当请求通过我们的路由器Worker时,我们将请求传递给正确的服务绑定,并从中接收响应。对于我们的路由器Worker,我们定义一个额外的变量,包含以下数据,这样我们就知道哪些路径应该映射到哪些服务绑定。当它附加到我们的新路由器Worker时,它会自动处理移除前缀,这样服务就可以从自己定义的URL或通过我们的路由器Worker访问……这是一个实现细节的选择,目的是当Worker通过路由器Worker访问时,它可以清理URL来处理请求,就像它是从路由器Worker外部调用的一样。
2026-02-01 08:31:22
607
原创 <span class=“js_title_inner“>Clawdbot 是如何实现永久记忆的?</span>
与运行在云端的ChatGPT或Claude不同,Clawdbot直接运行在你的本地机器上,并且能够集成到你日常使用的聊天平台中(Discord、WhatsApp、Telegram等)。但最吸引我的是它的持久化记忆系统——它能实现24/7的全天候上下文保持,记住对话内容,并无限期地基于之前的交互进行累积。但如果有一个AI助手,它能像一位真正的私人助理那样,永远记住你的偏好、你的项目细节、甚至你三个月前提过的小习惯?更妙的是,这些记忆完全存储在你自己的电脑上,由你全权掌控。基于LLM的压缩是一个有损过程。
2026-01-31 18:30:28
697
原创 Clawdbot 是如何实现永久记忆的?
与运行在云端的ChatGPT或Claude不同,Clawdbot直接运行在你的本地机器上,并且能够集成到你日常使用的聊天平台中(Discord、WhatsApp、Telegram等)。但最吸引我的是它的持久化记忆系统——它能实现24/7的全天候上下文保持,记住对话内容,并无限期地基于之前的交互进行累积。但如果有一个AI助手,它能像一位真正的私人助理那样,永远记住你的偏好、你的项目细节、甚至你三个月前提过的小习惯?更妙的是,这些记忆完全存储在你自己的电脑上,由你全权掌控。基于LLM的压缩是一个有损过程。
2026-01-31 18:30:28
298
转载 不用买 Mac Mini!8.8 元在云上跑硅谷最火的 AI 员工
通过我的专属链接注册(https://s.qiniu.com/vyaUby),能直接领 1000 万 Token,还能拿 100 元的服务器无门槛代金券,文末有福利合集。登录七牛云控制台(https://portal.qiniu.com),进入「云基础资源 - 全栈应用服务器 LAS」,点击「创建服务器」。→ 再成为推广者,邀请好友:https://www.qiniu.com/ai/promotion/invite。全是 Markdown 文件,直接在 workspace 目录里,想改就改。
2026-01-30 08:31:12
34
原创 Claude Code 一键切换神器:cc-switch,让你告别频繁改配置的痛苦!
最近几年,AI编程辅助工具简直是开发者的“外挂”:Claude Code、Codex、Gem)ini CLI、OpenCode……每个工具都有自己的强项和擅长的模型。选好后点击「Enable」,程序会自动写入对应CLI的配置文件(~/.claude / ~/.codex 等)。想在CLI里极致玩转多模型、多中转、Skills/Prompts管理的朋友,cc-switch几乎是必装工具。• 支持 Claude Code、Codex、OpenCode、Gemini CLI 四大主流AI编程CLI。
2026-01-29 08:32:02
1196
原创 <span class=“js_title_inner“>Claude Code 一键切换神器:cc-switch,让你告别频繁改配置的痛苦!</span>
最近几年,AI编程辅助工具简直是开发者的“外挂”:Claude Code、Codex、Gem)ini CLI、OpenCode……每个工具都有自己的强项和擅长的模型。选好后点击「Enable」,程序会自动写入对应CLI的配置文件(~/.claude / ~/.codex 等)。想在CLI里极致玩转多模型、多中转、Skills/Prompts管理的朋友,cc-switch几乎是必装工具。• 项目地址:https://github.com/farion1231/cc-switch。切换与管理的跨平台桌面应用!
2026-01-29 08:32:02
813
原创 Claude Code 的完美平替:OpenCode + GitHub Copilot(顶级模型+最优价格)
在当前席卷全球的“Vibe Coding”浪潮中,Anthropic 推出的 Claude 系列模型 + 终端工具 Claude Code,凭借极强的逻辑推理能力,成为了开发者眼中的“白月光”。但现实是残酷的:对于中国开发者而言,账号随时被封、海外信用卡支付遭拒、API 额度受限以及复杂的网络环境,构成了一道难以逾越的门槛。这套方案最具杀伤力的地方在于其经济逻辑。虽然最近国产编程模型不断发力,Claude Code + GLM-4.7 的表现非常出色,但面对复杂问题,Claude系列模型依然完胜。
2026-01-28 17:31:52
1113
原创 AI重塑编程:未来两年,软件工程师必须面对的五大冲击
在这种设想中,软件生产由AI系统或使用无代码平台的“公民开发者”处理,人类开发者的日常工作不再是充满激情的创造,而是审查、批准和修复AI提交的代码,确保其符合规范和安全标准。但另一方面,当AI处理了80%的常规编码工作后,人类专家的价值将前所未有地集中于那最困难的20%——复杂的架构设计、棘手的系统集成、严密的安全审查。他们将进化为更高级的“系统编排者”或“指挥家”,不再纠结于每一行代码的实现,而是从战略和产品层面进行思考,负责设计整个系统的蓝图,并决定如何将不同的任务分配给AI代理和软件组件。
2026-01-17 13:00:50
848
原创 Claude Agent SDK 智能体开发指南
2. 处理 result 消息: 这也揭示了 assistant 和 result 消息类型的核心区别:assistant 流展示的是代理的过程(它的思考和工具使用),而最终的、经过验证的、符合Schema的产品则只在任务结束时的 result 消息中交付一次。• 更丰富的日志输出: 代码现在不仅打印Claude的文本回复,还会打印出它正在使用哪个工具 (Using Glob...),这让代理的工作过程变得更加透明,便于我们观察和调试。它是一个强大的工具库,让你能够轻松地构建、测试和部署自己的AI代理。
2026-01-16 08:31:32
951
原创 <span class=“js_title_inner“>Claude Agent SDK 智能体开发指南</span>
2. 处理 result 消息: 这也揭示了 assistant 和 result 消息类型的核心区别:assistant 流展示的是代理的过程(它的思考和工具使用),而最终的、经过验证的、符合Schema的产品则只在任务结束时的 result 消息中交付一次。• 更丰富的日志输出: 代码现在不仅打印Claude的文本回复,还会打印出它正在使用哪个工具 (Using Glob...),这让代理的工作过程变得更加透明,便于我们观察和调试。它是一个强大的工具库,让你能够轻松地构建、测试和部署自己的AI代理。
2026-01-16 08:31:32
292
原创 CLAUDE.md 全方位指南:构建高效 AI 开发上下文
通过一个简单的提示,例如“请审查这个 CLAUDE.md 文件,并提出改进建议以使其更清晰、更高效”,你可以利用 Claude 自身的能力来发现这些问题。通过本文分享的五个高级技巧——将其视为活文档、保持精简、模块化管理、注意大小写,以及让 AI 自我优化——你可以将其从一个静态的指令列表,转变为一个强大的、与项目共同成长的动态知识库。我的建议是,以此为基础,然后删除所有你不需要的内容。我们不再仅仅是 AI 的使用者,更是其成长过程中的引导者,让工具本身参与到自我完善的流程中,形成一个持续改进的良性循环。
2026-01-15 11:40:52
764
原创 <span class=“js_title_inner“>CLAUDE.md 全方位指南:构建高效 AI 开发上下文</span>
通过一个简单的提示,例如“请审查这个 CLAUDE.md 文件,并提出改进建议以使其更清晰、更高效”,你可以利用 Claude 自身的能力来发现这些问题。通过本文分享的五个高级技巧——将其视为活文档、保持精简、模块化管理、注意大小写,以及让 AI 自我优化——你可以将其从一个静态的指令列表,转变为一个强大的、与项目共同成长的动态知识库。我的建议是,以此为基础,然后删除所有你不需要的内容。我们不再仅仅是 AI 的使用者,更是其成长过程中的引导者,让工具本身参与到自我完善的流程中,形成一个持续改进的良性循环。
2026-01-15 11:40:52
368
原创 Claude Code 最佳实践的 8 条黄金法则
比较一下这两种提问方式的天壤之别:模糊的请求是“给我建一个认证系统”,而一个经过规划的、具体的请求是“使用现有的User模型构建电子邮件/密码认证功能,将session存储在Redis中并设置24小时过期,并添加中间件保护/api/protected下的所有路由。• 提供“为什么”的背景 (Give it context about why): 告诉它“这个功能需要在每个请求上运行,所以性能至关重要”,或者“这只是一个原型,用完就扔”,这些约束会彻底改变模型解决问题的思路。你不是在和它聊天,你是在编程它。
2026-01-14 08:32:00
763
原创 从“命令”到“协作”:彻底改变你与 AI 编码方式的五个新范式
例如,你可以设置一个 hook,让 Agent 在完成代码修改后自动运行测试,如果测试失败,它会接收到一个继续工作的指令,如此循环往复,直到“所有测试通过”这个可验证的目标达成。最后,等待你的确认后才开始构建。为了让 Agent 更深度地融入你的工作流,Cursor 提供了两种强大的自定义方式:Rules(规则)提供静态的、始终生效的上下文,而 Skills(技能)则提供动态的、按需调用的能力。现在,不妨思考一下:在你的日常工作中,哪一个最让你头疼的重复性任务,可以交给一个精心调教的 Agent 来处理?
2026-01-13 13:35:30
574
原创 Anthropic 如何评估 AI Agent
你的指标选择,决定了你的优化方向。这并非简单的程序错误,而是前沿模型的一个典型特征:它们的解决问题的能力,已经开始超越那些嵌入在旧式评估里的、基于静态规则的假设。以Anthropic提到的 Opus 4.5 模型为例,在一个预订航班的测试任务中,它没有遵循预设的流程,而是通过发现政策中的一个漏洞,为用户找到了一个更好的解决方案。而且,在模型能力飞速发展的时代,一个强大的评估套件就是你的护城河。在开发AI智能体的过程中,许多团队都经历过这样的痛点:你修复了一个问题,却在不经意间引发了另一个更隐蔽的问题。
2026-01-12 17:01:45
785
原创 人工智能如何改变 Anthropic 的工作方式
如果有一天,你走进公司,发现写代码、查 bug、跑实验的大部分体力活,都已经由一位看不见的 AI 搭档在后台悄悄完成了——而你更多是在提问题、定方向、做决策,而不是一行行敲代码,这会是什么感觉?是兴奋,因为产出翻倍、想法终于可以快速落地;还是隐隐不安,因为自己赖以安身立命的“手艺”似乎正在慢慢被接管?对于正在建设 AI 的公司来说,这个问题来得比想象中更早、更猛。Anthropic 在 2025 年做了一次有意思的“自我实验”:他们把镜头转向公司内部,系统性地调查工程师和研究人员是如何使用 Claude 的
2025-12-18 18:02:25
1085
转载 TVP 七周年:奇迹同行,未来可期
您对腾讯云 TVP 七周年有怎样的生日祝福或寄语,您和 TVP 有怎样难忘的故事?请保留朋友圈到 12 月 28 日下午 18:00,兑奖需核验朋友圈分享状态。在评论区写下您的祝福或故事,截至 12 月 28 日中午 12:15,是数百场交流、千次碰撞、无数个“同行”的瞬间。点击回顾 TVP 七周年,文末更有重磅好礼。到 TVP 公众号后台,即可参与重磅抽奖。左右滑动查看更多“思想共振”的瞬间。左右滑动查看更多“深入一线”的瞬间。左右滑动查看更多“共建生态”的瞬间。左右滑动查看更多“湾区联结”的瞬间。
2025-12-15 13:01:04
61
原创 Agent处理复杂长时任务的有效约束:像人类工程师一样思考
在 claude.ai 克隆项目的例子中,这份功能列表包含了 200 多个功能,例如:“用户可以打开一个新的对话框,输入问题,按下回车,并看到 AI 的回复”。在更新后的 Claude 4 提示工程指南中,我们分享了一些多上下文窗口工作流的最佳实践,其中包括一种结构化的“外壳”,会在“第一次上下文窗口使用一个不同的提示”。这里的“干净状态”,指的是那种可以直接合并到主干分支的代码:不存在严重 bug,结构清晰、文档健全,一个新的开发者接手时,可以立刻着手开发新功能,而无需先清理各种历史遗留问题。
2025-12-01 17:03:15
984
原创 Vibe Coding时代的物理外挂,有了它效率再翻倍
从我日常内容审阅的使用角度来说,一眼看到更多的内容是我的刚需,以往的旗舰系列大多为16:9的设定,横向没毛病,但是纵向的弱点对于我这样强依赖终端来使用Claude Code或执行命令的用户来说,底部终端能力处于常开状态,纵向的内容可视区域就显得捉襟见肘了。除了上面我目前已经深度使用的功能之外,还有一些高级功能DD因为缺乏场景,还没能切实体验,比如:KVM和MST功能,开发人员可以用KVM来支持多主机的连接和切换,MST则可以实现多屏串联,这对于需要跨系统多任务的开发者来说是非常有用的功能。
2025-11-27 08:32:05
365
原创 LLM调用的最佳数据格式:TOON,成本直降50%|附Java使用指南
• 对延迟要求严格的应用 :如果端到端响应时间是您的首要考虑因素,请在您的实际环境中进行基准测试。在大模型逐渐融入业务系统的阶段,结构化数据输入/输出已成为落地应用的必需:RAG 检索结果、Agent 工具调用参数、业务查询结果、批处理列表等都需要让自然语言与“可机读”的结构化格式互通。对于合适场景,如果目前Token消耗量偏高的应用,可以考虑在数据格式上进行优化,从而实现成本的优化。TOON 的准确率达到 73.9% (JSON 的准确率为 69.7%),同时使用的标记数减少了 39.6%。
2025-11-14 10:11:08
504
原创 规范驱动开发(SDD):用 AI 写生产级代码的完整指南
两者关系:提示工程是规范驱动中的一种技巧,但规范驱动需要超越单一提示的全面规范。直面顾虑:工作安全(AI 是增能不是替代)、学习曲线(提供培训)、质量(有验证框架)。核心思想是:让“形式化、可执行的规范”成为事实来源,以此引导 AI 生成一致、可维护、可上线的代码。一份好的规范通常包含:目标与价值(解决什么问题)、上下文与约束(架构、依赖、环境、性能要求)、功能需求(核心行为与特性)、非功能需求(安全、性能、可扩展、可访问性)、边界与错误处理、测试标准、示例(输入/输出、样例数据、使用场景)。
2025-11-10 08:21:13
1359
原创 如何使用 Claude Code 的每个功能
不过,很多开发者的选择常常受一些“表面因素”影响,比如某个功能“恰好”更顺手,或系统提示语的“氛围感”更对味。或者做一个“自建版 v0(v0‑at‑home)”,让设计团队在自家 UI 框架里随心编码(vibe code)原型前端,使灵感更高保真,产出的代码更快用于生产前端。3. 快速原型验证:这是我最常用的方式,不仅用于编码。在我的《Building Multi‑Agent Systems(Part 2)》一文中,我称之为“主‑克隆架构”,并且认为它明显优于自定义子代理所倡导的“领导‑专家模型”。
2025-11-07 08:02:39
981
转载 出海 AI 公司招 Java 大佬|北京
我们专注于为商业用户提供高效的网页数据抓取能力。接下来半年,我们将发布重要升级,推出基于智能 Agent 的新功能,使数据抓取与处理更加精准高效 ~公司融资 510 万美金, 资方为中国顶级的美元基金。我们的团队成员来自于微软、阿里、字节跳动、美团、知乎以及美国各大独角兽创业公司等知名企业。月薪:40K ~ 50K * 14 薪 (人匹配的话,年包都好办),现诚邀一位经验丰富的高级后端工程师加入我们的核心团队 ~坐标北京 soho,刚换大办公室 欢迎转给朋友们,靠谱!欢迎转给朋友们,靠谱的!
2025-11-04 23:15:32
182
转载 微服务正在悄然消亡:这是一件美好的事
Microservices Are Quietly Dying — And It’s Beautiful》,许多观点直击痛点、非常启发,于是顺手把它翻译出来,分享给大家,也希望能给同样在复杂性与效率之间权衡的团队一些参考。我们有 Kubernetes,有服务网格,有用 Jaeger 的分布式追踪,有 ELK 的日志——我们很“现代”我们是工程师,我们很“高级”。一个结构良好的单体,拥有清晰的模块、明确的边界上下文和合理的关注点分离,比一团由希望和 YAML 勉强粘合在一起的微服务乱麻走得更远。
2025-10-24 08:02:36
96
转载 Spring Boot快速集成MiniMax、CosyVoice实现文本转语音
此时就比较推荐使用 MiniMax、CosyVoice这些提供的音色,这些音色的效果会更加拟人、逼真,接近真人发音。这里依然通过 UnifiedTTS 的统一接口来对接,这样我们可以在不更换客户端代码的前提下,快速在 MiniMax、CosyVoice等引擎之间做无缝切换。本文将引导读者从零到一把MiniMax、CosyVoice的语音合成能力整合到你的Spring Boot应用中,最后也会给出一个可复制的 Spring Boot 集成示例,• 记录下创建的ApiKey,后续程序配置的时候需要使用。
2025-10-24 08:02:36
139
原创 Jackson 序列化的隐性成本
我们常以为接口的瓶颈在数据库或业务逻辑,但在高并发、海量请求下,真正吞噬 CPU 的,可能是“把对象变成 JSON”的那一步。Jackson 很强大,直到你看到它真正让你付出了什么代价。把它乘以每天 5000 万次请求,你就会得到一张能让 CTO 掉眼泪的 AWS 账单。Jackson 正在做它被设计要做的事:在零配置的情况下,处理任意结构的 Java 对象。但即便用了 DTO,如果你还在序列化巨大的列表,Jackson 仍会慢。别把责任推给 Jackson,它只是忠实地序列化了你让它序列化的庞大对象图。
2025-10-23 08:20:58
845
转载 Spring Boot集成免费的EdgeTTS实现文本转语音
在需要文本转语音(TTS)的应用场景中(如语音助手、语音通知、内容播报等),Java生态缺少类似Python生态的Edge TTS 客户端库。同时,UnifiedTTS 还支持 Azure TTS、MiniMax TTS、Elevenlabs TTS 等多种模型,通过对请求接口的抽象封装,用户可以方便在不同模型与音色之间灵活切换。UnifiedTTS 抽象了不同模型的请求,这样用户可以用同一套请求参数标准来实现对不同TTS模型的调用,这个非常方便。2. 注册 UnifiedTTS,获取 API Key。
2025-10-19 14:06:09
177
原创 变量名越怪,JVM 越快!
短且更“随机”的名字,往往有更好的哈希分布,更低的碰撞率,更友好的缓存命中。用 JMH 写对照实验,两个版本代码逻辑完全一致,唯一变量是“命名长度与形态”:一个版本用规范、完整、可读的名字,另一个版本把元音删掉、前缀缩短、偶尔把名字变得更随机。毕竟,在工程世界里,漂亮的代码不一定是最快的代码,而我们有时需要的,是能顶住流量的那一段真实提升。,把这条铁律里的“性能部分”掀了桌:在 Java 的某些栈中,刻意缩短、甚至“错拼”的变量名,可能真的让服务更快。在某些路径上,名字的长度与分布会成为可测的成本。
2025-10-19 14:06:09
383
原创 使用 ONNX 将 AI 推理引入 Java:企业架构师实用指南
作为被各训练框架广泛支持的开放标准,组织可以自由使用偏好的生态进行训练,并在 Java 中部署,而不必担心供应商锁定或 API 漂移。的系统上,推理可以以最小配置卸载到 GPU。一个可插拔、对环境敏感的部署模型,无论是嵌入式、共享式还是容器化,都能确保推理无缝融入现有的 CI/CD 与运行策略。ONNX 让团队可以将 Python 中训练的模型导出并在 Java 中原生运行,避免嵌入 Python 运行时、gRPC 桥接或容器化的 Python 推理服务,这些都会增加运维摩擦并复杂化安全部署。
2025-10-13 08:20:30
1005
原创 将 GPU 级性能带到企业级 Java:CUDA 集成实用指南
Java 与 CUDA 的组合或许并不主流,但在得当的运用下,它能为企业系统解锁全新的性能门类。多进程涉及运行多个进程,每个进程拥有独立的内存空间,可能在不同的 CPU 核上并行执行。,尽早捕获静默失败。另一方面,CUDA 处于截然不同的世界,通过精细的内存管理、启动成千上万的线程、并最大化 GPU 利用率来榨取性能。然而,一旦涉及高性能计算(HPC)或数据密集型作业,Java 的托管运行时与垃圾回收开销会在满足现代应用的低延迟与高吞吐需求上带来挑战,尤其是那些涉及实时分析、海量日志管道或深度计算的场景。
2025-10-12 23:15:51
801
原创 如何在 Spring Boot 应用中配置多个 Spring AI 的 LLM 客户端
首先,我们演示了 Spring AI 的抽象层如何简化来自不同供应商(如 OpenAI 与 Anthropic)的模型配置。随后,我们解决了更复杂的场景:在同一供应商下配置多个模型,并在 Spring AI 的自动配置不够用时创建自定义 bean。我们既会配置来自不同供应商的模型,也会配置同一供应商下的多个模型。尽管主、次级 LLM 的配置为无效模型,聊天机器人仍返回了正确响应,这验证了系统成功回退到了第三个 LLM。我们创建了一个高质量的技术交流群,与优秀的人在一起,自己也会优秀起来,赶紧。
2025-10-10 17:05:21
894
原创 Netflix确保数亿用户观影体验的“事件”管理是如何构建与实践的
无论你是关注系统可靠性的技术从业者,还是想了解科技巨头如何构建韧性架构的读者,这篇翻译都将为你揭示:当事件管理成为每个工程师的日常技能,企业如何在持续改进中走向真正的技术成熟。我们的目标是:让更多事件被及时发起,并让更多团队参与其中。除了快速采用,工具还改变了工程师对 “事件” 的看法:事件不再是 “可怕的大型故障”,而是 “任何值得关注与学习的影响或中断”。尽管 Netflix 拥有世界一流的工程团队,但在我们的时间线、投入成本与后续持续维护的约束下,构建一套完全满足上述要求的自研方案并不现实。
2025-10-03 17:01:30
948
原创 要不要 Vibe Coding ?
AI 编码助手的效果取决于所用模型、工具内部的提示编排,以及助手与代码库和开发环境的集成程度。因此,对工具质量的评估既来自于它宣称的功能,也来自于我们以往对它的真实使用体验。• 你的代码库是否“对 AI 友好”,也就是是否以一种便于 AI 处理的方式进行结构化?如果是后者,那么如果你不明确告知什么是好的示范,AI 生成更多同类问题的概率会升高。你也可以更普遍地考虑,你当前处理的是一个对“正确性”要求很高的用例,还是不是。• AI 助手对你的代码库的访问是否足够,从而能做出好的决策?你是否在使用强类型语言?
2025-09-29 12:01:42
1051
原创 如何用 ShedLock 让 Spring Boot 的定时任务在多实例环境下只执行一次
中我们介绍了如何用 @Scheduled 注解来创建定时任务,Spring 的任务调度用起来确实顺手。可这种实现方式一上多实例(比如多副本部署),同一个定时任务会在每个节点都跑一遍,等于任务会重复执行。它会在库里新建一张表/文档,记录当前的锁。这篇文章就聊聊怎么用 ShedLock,让定时任务在多实例环境下“同一时刻只跑一次”。一句话总结:用 ShedLock,可以让 Spring 在多实例部署下也能把定时任务“稳稳只跑一次”。我们创建了一个高质量的技术交流群,与优秀的人在一起,自己也会优秀起来,赶紧。
2025-09-28 13:30:39
579
原创 Spring Boot 4 与 Spring Framework 7 全面解析:新特性、升级要点与实战指南
现在不一样了,Spring 能把缓存里的 “上下文” 暂停,要用的时候再恢复 —— 这样能省内存,跑大量测试的时候速度也会变快。类生成 “元数据” 时,只会从这个类所在的模块里找信息。但在模块化项目里,有时候会用到其他模块的 “嵌套类型” 或者 “基类”,而这些模块的源代码在构建时可能拿不到 —— 这样生成的元数据就会不完整,比如少了属性描述或者默认值。作为第四个大版本,Spring Boot 这次加了不少实用改进,重点提一下:性能变快了、更容易 “监控” 应用了、维护起来更省心了,连配置支持都变强了。
2025-09-26 13:01:09
1009
原创 5分钟带大家过一遍 CodeBuddy Meetup 上收获的一些新理解、新技能
从这次活动的分享嘉宾所展示的案例(UI为蓝紫色)和观点中可以看到,对于模型的选择,实战的开发者们几乎都是以Claude为主。所以,如果您刚上手AI Coding,且是结果导向的应用,那么在条件允许的情况下,一定要优先考虑Claude模型。随着工具的不断进化,未来当我们想要一个小软件,都可以像做头像一样,自己捏一个出来。(2)纠正了对CLI的理解,不是简化版(无GUI)的开发工具,而是贯穿软件工程全链路的软件开发智能体,是更高级、更专业的开发工具。最近也是可以尝试引入这些东西,重构下自己的开发部署流程了。
2025-09-19 15:02:37
496
原创 为什么你的 Vibe Coding 体验那么差?
• 复杂问题:常见于我们使用Vibe Coding做了一个Project之后,需要做一些变更,此时我们已经具备一些基本使用技巧,能够详细描述我们的需求要点,但由于该需求的实现在一个Project中需要跨越多个不同模块(比如:用户、订单、库存)、不同职能(比如:涉及前端开发、后端开发)、工程管理相关内容(部署脚本的变更、监控端点的对接等),由于上下文的限制,AI很难全面的理解当前情况以给出合理的修改。所以,在 Vibe Coding的时候,清晰的语言组织能力,将需求清楚的描述出来很重要。
2025-09-01 16:10:26
964
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅