网络架构,是数据中心的“神经脉络”

网络架构,是数据中心的“神经脉络”

如果把数据中心比作一个“人”,则服务器和存储设备构成了数据中心的“器官”,而网络(交换机,路由器,防火墙)就是这个数据中心的“神经脉络”。那本节就针对数据中心的网络架构和一般设计的套路来说了。

01网络分区与等保

一般情况下,本着灵活、安全、易管理的设计原则,企业都会对数据中心网络的物理设备进行分区。通常情况下,数据中心都会采用核心—汇聚—接入三层的网络结构,核心用于所有流量的快速转发,而汇聚则是在每个网络分区上,担任网关的功能。

一般来说,数据中心的网络分区中,每一个区域会根据预期的流量和服务器的数量,分配不同的业务网段。同时,在一些等保要求较高的区域,还会设置防火墙这样的安全设备,来控制进出这个区域的流量,如下图所示:

“等保”是等级保护的简写,在设置数据中心服务器区域的时候,不同业务的服务器的等级保护是不一样的。比如后台存储,带库,数据库这些服务器的等保和Web、前端、APP的等保就不一样。而在数据中心网络中,防火墙的功能,就是用来划分“等保”,同时用来控制不同等保之间的互访。

那如何更好的来理解这个“等保”的概念呢?

在目前的数据中心网络架构中,要考虑到不同等保之间的流量控制,又要考虑到在设计路由的时候的简便和快捷,目前数据中心的防火墙几乎都会采用旁路的方式来部署,再配合汇聚交换机上的VRF来控制流量。

02数据中心网络分区的方式

分区的划分方式有以下三种,不同分区方式各有优缺点,通常结合使用。

A.按照服务器类型分区

比如x86服务器、小型机、刀片机、大型机、虚拟机进行分类。完全按照服务器型号分类的话,在实际应用中,可能某个企业小型机被大量使用,而大型机几乎没用,就会导致小型机的网络区域流量巨大而大型机这个区域闲置了。所以,现在的数据中心,几乎看不见如此分配区域的情形了。


B.按照应用层次分区

比如Web、APP是前端服务器,而数据库、存储、NFS这些是后端服务器,所以把前端服务器放在一个区域,后端服务器放在一个区域。在有些企业的数据中心,也确实是这么分区的。比如,所有的Web服务器放在“综合业务区”,把数据库就放在“生产管理区”(你也看出来,连区域名字都起得那么“模糊” )。如此分区的好处是便于管理,因为前端服务区域和后端服务区域不在一个等保内,前端服务区域直接面对办公,后端区域则为前端区域服务,如下图所示:


这种区域的设置方式的好处是便于分开管理,但是坏处也是运维起来屁事太多。比如,前端新上线了一个APP,后端需要相应的数据库支持,此时系统运维人员就要找网络运维人员,请他们在后端区的防火墙上开通相应的安全策略。考虑到前端和后端对接也有诸多非网络的问题,加上前端和后端之间又有防火墙的“阻碍”,所以一旦前端和后端的通信出了问题,网络运维人员就很容易“被背锅”了。


C.按照应用类型划分

例如核心服务,公共服务,办公区域,隔离区域,开发测试区域进行划分。这种分区的好处就是,一个“功能业务”的前端服务器和后端服务器都在一个等保内了,在前端和后端对接的时候,网络运维人员不至于因为防火墙策略的原因而“背锅”。但是这样划分又会显得网络规划有点“混乱”。对于一些对前期IP地址规划不太重视的管理员来说,可能会对前端服务器和后端服务器的IP地址规划带来些麻烦。比如,给核心服务器区的IP地址段是10.114.128.0/21,在这里有10.114.128.0/24---10.114.135.0/24,整整16个C段。但是对于不严谨的管理员来说,可能会让10.114.128.0/24做前端的IP地址,10.114.129.0/24做后端的IP地址,这样的话,前端和后端的IP地址段就“交叉”了。


如果遇到一种极端的情况,在多级数据中心使用MPLS V.PN网络对接,让前端和后端的流量“分流”时,这种前端和后端IP地址段一“交叉”,分流就会显得极其麻烦。


综上所述,每一种分区的方式,都有自己的优点和缺点,所以也要按照实际情况进行分区。

03数据中心常用网络架构

A.扁平化组网

对于功能单一,服务器数量小于300台的小型数据中心来说,通常情况下都会采用两层式的扁平化组网。也就是汇聚设备担任网关,接入设备就是一个二层设备,打通二层通道的功能。对于扁平化的组网,也分为比较传统的VRRP+MSTP,和“堆叠+链路捆绑”两种方式进行组网设计。


第一种就是VRRP+MSTP的结构,如下图所示:

相比起第一种非常传统的MSTP+VRRP的架构,第二种“胖树”结构,则是当前数据中心扁平化组网的常用结构。它的思路是:汇聚交换机必然堆叠,接入交换机按需堆叠,所有冗余链路必须捆绑,形成一个“胖树”状结构。它的优点就是,既保证了设备的冗余性,提升带宽性能,也能从根本上防止二层环路。但是,要实现设备的堆叠,这个对硬件有要求,所以,这种“胖树”状结构的组网,成本比起第一种来说要高不少。


B.三层组网架构

对于大型数据中心,功能多样,且要进行功能分区的场合,就会采用标准的三层架构。
在这种组网方式中,交换核心区是整个数据中心网络的枢纽,核心设备通常部署2-4台大容量高端框式交换机,可以是独立部署,也可以通过堆叠技术后成组部署(但是考虑到核心和汇聚之间都是三层连接,且堆叠有一定裂开风险,所以一般核心都会采用独立部署的方式,即核心之间只和汇聚之间有互联,核心之间无互联)


分区内的汇聚层和接入层通过堆叠实现二层破环。


下图为大家展示了一个当前主流的数据中心三层组网架构图:


刚才的拓扑图中,各个大区域之间的防火墙采用了旁路的连接方式。防火墙采用旁路连接的目的,也是为了提升可扩展性,并且可以兼容动态路由。而这种结构,要想实现核心—汇聚—接入之间的流量进入防火墙,就需要使用VRF在汇聚交换机上隔离路由了。所以,VRF在这个地方,起到的作用是隔离路由,起到一个“化旁路为串联”的作用。


本文的难点,也正好是汇聚交换机上使用VRF时,这个业务流的逻辑图如何画出。实际上,我本人在刚接到这个项目的时候,也是花了一段时间来理解这个VRF和旁路防火墙之间的关系的。下面我可以简单为大家说一下划业务流的方法。


所谓“单一等保”,实际上就是汇聚下方的所有业务网段可以直接访问,流量无需经过防火墙控制。在这种情况下,就只需要一个VRF,把汇聚—核心和汇聚—防火墙之间的流量隔离开即可。


物理连接图如下:


由于汇聚、接入,包括防火墙做了双机或者堆叠,所以在此时可以将汇聚、接入先暂时画成单个设备,这样物理结构就不会太复杂了。


然后,去掉汇聚层设备的图标,用一个方框来代替。在方框内部添加两个小方框,代表两个拥有独立三层路由的虚拟设备,与核心连接的是全局路由,与接入连接的是VRF路由。然后,防火墙上“画出”两条线,分别与“全局路由”小框和“VRF”小框互联。防火墙与汇聚连接的两条线,可以是不同的物理接口,也可以是不同的子接口。如下图所示:


最后,去掉汇聚层设备位置的大方块,将防火墙“塞”在“全局路由”小框和“VRF”小框之间,这样,一个单一等保级别的,化旁路为串联的流量图就完成了。


两个等保级别,这就要求了两个等保级别内的业务在互访时,流量需要经过防火墙。这里你就要记住:一个等保一个VRF,不同等保级别的流量要放在不同的VRF内。


在画双等保逻辑流量的时候,采用的方式和单一等保逻辑流量的方式是一样的。第一步,仍然是把双机结构改成单机结构,所不同的是,防火墙和汇聚之间,需要画三条线。总之,汇聚下面有N个等保,汇聚和防火墙之间就画N+1条线。


然后,去掉汇聚层设备的图标,用一个方框来代替。在方框内部添加三个小方框,代表三个拥有独立三层路由的虚拟设备,接入层交换机换成两个,分别代表等保1的接入和等保2的接入。


然后,去掉大方框,将防火墙“塞”在“全局路由”小方框和“VRF-1”、“VRF-2”小方块之间,先形成如下图所示的结构:


最后,将两个等保“VRF”的小方块,分别连接在防火墙的两边,这样,一个双等保的化旁路为串联的业务流逻辑图就画好了,根据标注的接口编号和规划的IP地址,就可以写配置脚本了。而且串联的逻辑图画好以后,也立刻能够知道静态路由该如何规划了。


记住一点:“全局”、“VRF-1”、“VRF-2”上标注的接口,其实全是汇聚交换机的。


记住这个方式,以后遇到旁路防火墙,下面有N多个等保的业务流,也可以按照这个方式去照葫芦画瓢了。

04数据中心未来的发展

随着大数据时代的到来,企业数据中心承载的业务越来越多,新业务上线越来越快。为了满足业务的需要,传统数据中心网络将逐渐向具备弹性、简单和开放特征的新一代数据中心网络演进。


A.弹性

弹性是指网络能够实现灵活、平滑扩展以适应业务不断发展的需要。弹性扩展包括设备级、系统级和数据中心级的扩展。


设备级弹性扩展:网络设备需要具备持续的平滑扩容能力。例如接入交换机可以提供25GE/40GE的接入能力,核心交换机能提供百T以上的交换容量,高密度的100GE/400GE接口等。


系统级弹性扩展:数据中心网络需要支持更大规模的二层网络。例如提供X万台10GE服务器接入的能力。


数据中心级弹性扩展:数据中心互联网络要能够支持多个数据中心的资源整合,实现更大规模虚拟机跨数据中心迁移。


B.简单

简单就在于要能够让网络更好的为业务服务,能够根据业务来调度网络资源,例如要能够实现网络资源和IT资源的统一呈现与管理,能够实现从业务到逻辑网络再到物理网络的平滑转换等。


C.开放

传统网络的管理维护是封闭的,独立于计算、存储等IT资源。网络开放以后,可以打破原有的封闭环境,使网络设备可以与更多的SDN控制器、第三方管理插件、虚拟化平台等协同工作,从而打造更灵活的端到端数据中心解决方案。


来源:网络民工

资料免费送(点击链接下载)

史上最全,数据中心机房标准及规范汇总(下载)

数据中心运维管理 | 资料汇总(2017.7.2版本)                                                    

加入运维管理VIP群(点击链接查看)

《数据中心运维管理》VIP技术交流群会员招募说明

扫描以下二维码加入学习群

### GPU 发展史的关键里程碑和技术进步 #### 早期图形加速器的诞生 在1980年代末期至1990年代初期,随着个电脑市场的兴起,对于更复杂视觉效果的需求推动了专用硬件解决方案的研发。最初的图形处理器专注于二维(2D)绘图操作,在此期间出现了多个重要的产品线,例如S3 Graphics推出的Trio系列芯片组,它们集成了VGA控制器与显示内存于单一硅片之上,从而提高了系统的整体性能并降低了成本。 #### 图形渲染能力的重大飞跃 到了1997年,NVIDIA发布了RIVA 128——一款能够执行三角形光栅化的设备;这标志着向三维(3D)图形处理迈进了一步。随后几年里,该公司继续改进其架构设计,并引入更多特性来增强游戏体验和其他应用领域中的表现力。特别是GeForce 256作为首款被正式命名为GPU的产品问世于1999年底,它不仅支持可编程着色指令集扩展(Turing完备),而且具备每秒绘制数百万个多边形的能力[^3]。 #### 统一计算平台概念的确立 进入新世纪之后不久,ATI Technologies(后来被AMD收购)推出了Xbox定制版显卡以及桌面级RV350核心等多款高性能产品。与此同时,行业内部关于如何定义下一代图形接口标准也逐渐达成共识:即DirectX 9.0c 和 OpenGL ES 2.x 中所体现出来的统一渲染管线(Unified Shader Model, USM)理念。这种变化使得开发者可以更加灵活地编写跨平台应用程序代码片段,同时也促进了通用目的运算(GPGPU)研究方向上的探索与发展。 #### CUDA生态系统的建立及其影响 2006年至2007年间,NVIDIA 推出了Compute Unified Device Architecture (CUDA),这是一个允许软件工程师利用GPU来进行非图形任务处理的强大工具包。通过提供易于使用的API层面上的支持,再加上不断完善的驱动程序库和编译环境,越来越多的研究员开始尝试将机器学习算法移植到这些高度并行化的平台上运行。此举极大地加快了许多科学计算密集型项目的进展速度,并最终促成了深度神经网络训练框架TensorFlow、PyTorch 的广泛采用。 #### AI时代的到来与GPU角色转变 自2012年起,得益于ImageNet竞赛中AlexNet取得的成功,卷积神经网络(CNNs)迅速走红。由于这类模型通常涉及大量矩阵乘法运算,因此非常适合部署在具有数千个流处理器单元(FPUs) 的现代GPU上。此后多年间,英伟达凭借Volta、Ampere等一系列先进制程节点下的新产品持续引领市场潮流,同时英特尔(Intel Corporation) 及其他竞争者也在积极布局该细分赛道以争夺份额。如今,除了传统意义上的图形渲染之外,工智能推理服务也成为衡量一块优秀消费级/数据中心级别显卡的重要指标之一。 ```python import matplotlib.pyplot as plt from datetime import date years = ['Late 1990s', '1999', 'Mid-2000s', '2006-2007', 'Since 2012'] milestones = [ "First dedicated GPUs with basic 3D acceleration", "Introduction of GeForce 256 - the first true GPU", "Adoption of unified shader model in graphics APIs", "Launch of NVIDIA's CUDA programming environment", "Deep learning boom fueled by efficient CNN implementations on GPUs" ] plt.figure(figsize=(10, 6)) plt.barh(years[::-1], range(len(milestones)), color='skyblue') for i, milestone in enumerate(milestones[::-1]): plt.text(-0.5, i, f'{milestone}', va='center') plt.title('Key Milestones in GPU Development History') plt.xlabel('Timeline') plt.ylabel('Significant Events') plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值