论文解读: Quantized Convolutional Neural Networks for Mobile Devices

CNN网络在许多方面发挥着越来越重要的作用,但是CNN模型普遍很大,计算复杂,对硬件的要求很高,这也是限制CNN发展的一个因素。在这篇论文中,作者提出了一个加速和压缩CNN的方法——Quantized CNN,主要思想是对卷积层和全连接层中的权重进行量化,并最小化每层的响应误差。作者也在ILSVR...

2019-03-04 18:35:29

阅读数 81

评论数 0

理解熵和交叉熵

作者简介:SIGAI人工智能平台(www.sigai.cn) 本文PDF版下载地址:http://www.sigai.cn/paper_80.html XGBoost是当前炙手可热的算法,适合抽象数据的分析问题,在Kaggle等比赛中率获佳绩。市面上虽然有大量介绍XGBoost原理与使用的文章,但...

2019-01-19 16:55:27

阅读数 290

评论数 0

理解EM算法

EM( expectation-maximization,期望最大化)算法是机器学习中与SVM(支持向量机)、概率图模型并列的难以理解的算法,主要原因在于其原理较为抽象,初学者无法抓住核心的点并理解算法求解的思路。本文对EM算法的基本原理进行系统的阐述,并以求解高斯混合模型为例说明其具体的用法。文...

2019-01-15 11:57:40

阅读数 190

评论数 0

轻量化神经网络综述

陈泰红 研究方向:机器学习、图像处理 导言 深度神经网络模型被广泛应用在图像分类、物体检测等机器视觉任务中,并取得了巨大成功。然而,由于存储空间和功耗的限制,神经网络模型在嵌入式设备上的存储与计算仍然是一个巨大的挑战。 目前工业级和学术界设计轻量化神经网络模型主要有4个方向: (...

2018-09-28 10:33:28

阅读数 1919

评论数 0

机器学习与深度学习核心知识点总结 写在校园招聘即将开始时

导言 一年一度的校园招聘就要开始了,为了帮助同学们更好的准备面试,SIGAI 在今天的公众号文章中对机器学习、深度学习的核心知识点进行了总结。希望我们的文章能够帮助你顺利的通过技术面试,如果你对这些问题有什么疑问,可以关注我们的公众号,向公众号发消息,我们将会无偿为你解答。对于不想在近期内找工作...

2018-08-09 14:34:52

阅读数 451

评论数 0

反向传播算法推导-卷积神经网络

导言– 在SIGAI之前的公众号文章“反向传播算法推导-全连接神经网络”中,我们推导了全连接神经网络的反向传播算法。其核心是定义误差项,以及确定误差项的递推公式,再根据误差项得到对权重矩阵、偏置向量的梯度。最后用梯度下降法更新。卷积神经网络由于引入了卷积层和池化层,因此情况有所不同。在今天这篇...

2018-08-08 11:57:32

阅读数 1333

评论数 0

机器学习算法地图

很多同学在学机器学习和深度学习的时候都有一个感受:所学的知识零散、不系统,缺乏整体感,这是普遍存在的一个问题。在这里,SIGAI对常用的机器学习和深度学习算法进行了总结,整理出它们之间的关系,以及每种算法的核心点,各种算法之间的比较。由此形成了一张算法地图,以帮助大家更好的理解和记忆这些算法。如果...

2018-07-05 12:10:07

阅读数 1474

评论数 4

卷积神经网络的压缩和加速

原创声明:本文为 SIGAI 原创文章,仅供个人学习使用,未经允许,不能用于商业目的。 相关背景 为什么要对网络进行压缩和加速呢?最实际的原因在于当前存储条件和硬件的计算速度无法满足复杂网络的需求,当然也许十几年或更远的将来,这些都将不是问题,那么神经网络的压缩和加速是否仍有研究...

2018-06-26 10:29:21

阅读数 2611

评论数 1

论文解读 Receptive Field Block Net for Accurate and Fast Object Detection

论文解读 Receptive Field Block Net for Accurate and Fast ECCV 2018 随着深度神经网络的发展,目前性能最佳的目标检测模型都依赖于深度的CNN主干网,如ResNet-101和Inception,虽然强大的特征表示有利于性能的提升,但却带来高额的...

2019-03-01 17:39:03

阅读数 88

评论数 0

机器学习中的编码器-解码器结构哲学

机器学习中体现着各种工程和科学上的哲学思想,大的有集成学习,没有免费午餐,奥卡姆剃刀;小的有最大化类间差异、最小化类内差异。对于很多问题,存在着一类通行的解决思路,其中的一个典型代表就是“编码器-解码器”结构。这一看似简单的结构,背后蕴含的工程思想却非常值得我们学习和品味。

2019-02-27 17:50:43

阅读数 56

评论数 0

【论文解读】如何让CNN高效地在移动端运行

尽管最新的高端智能手机有强大的CPU和GPU,但是在移动设备上运行复杂的深度学习模型(例如ImageNet分类模型)仍然十分困难。为了可以将深度网络模型应用于移动设备,本文提出了一个简单且有效的压缩整个CNN模型的方案,称为“one-shot whole network compression”,...

2019-02-22 18:22:59

阅读数 177

评论数 0

CornerNet: Detecting Objects as Paired Keypoints论文解读

#### 作者简介:SIGAI人工智能平台 全文PDF下载:http://sigai.cn/paper_101.html 本文提出一种使用单个卷积神经网络的新型物体检测方法: CornerNet.本文通过将目标定义为成对关键点,消除了单阶段检测网络中对anchor box的需要. 除了新颖的网络形...

2019-02-21 11:45:34

阅读数 62

评论数 0

2018年国外主要实验室和科研团队成果和动向

2018年国外主要大牛和实验室动向和成果

2019-02-15 17:08:08

阅读数 152

评论数 0

理解隐马尔可夫模型

作者简介:SIGAI人工智能平台 全文PDF下载:http://www.sigai.cn/paper_99.html 隐马尔可夫模型(Hidden Markov Model,简称HMM)由Baum等人在1966年提出[1],是一种概率图模型,用于解决序列预测问题,可以对序列数据中的上下文信息建模。...

2019-02-14 23:35:49

阅读数 754

评论数 0

基于单目视觉的三维重建算法综述

作者:SIGAI特邀作者陈泰红 PDF地址:http://sigai.cn/paper_97.html 三维计算机视觉在计算机视觉是偏基础的方向,随着2010年阿凡达在全球热映以来,三维计算机视觉的应用从传统工业领域逐渐走向生活、娱乐、服务等,比如AR/VR,SLAM,自动驾驶等都离不开三维视觉的...

2019-01-28 17:30:25

阅读数 123

评论数 0

哪些成为了经典-引用次数最多的10篇机器学习文献

近40年来机器学习领域产生了数以万计的论文,并以每年上万篇的速度增长。但真正能够称为经典、经受住历史检验、能投入实际应用的并不多。本文整理了机器学习历史上出现的经典论文,按照被引用次数对它们进行了排序,分为top10,被引用次数超过2万,被引用次数超过1万,未来有潜力的文章4部分。它们已经或者在未...

2019-01-23 16:03:09

阅读数 103

评论数 0

弯曲文字检测之SPCNet

获取全文PDF请查看:弯曲文字检测之SPCNet 一、简介 文字检测在深度学习的推动下,最近几年取得了长足的进步。由于多媒体检索,工业自动化,视力障碍人士辅助设备等应用的需求日益增长,场景文本检测是的计算机视觉的热门研究话题之一。给定一张自然场景图像,定位出图中的所有文字的位置,即场景...

2019-01-21 15:18:58

阅读数 255

评论数 0

干货|手把手教你在NCS2上部署yolov3-tiny检测模型

获取全文PDF;请查看http://www.sigai.cn/paper_68.html 如果说深度学习模型性能的不断提升得益于英伟达GPU的不断发展,那么模型的边缘部署可能就需要借助英特尔的边缘计算来解决。伴随交通、医疗、零售等行业中深度学习应用的发展,数据处理和智能分析逐渐从云端走向边缘。本...

2019-01-16 11:22:38

阅读数 1021

评论数 1

从安全视角对机器学习的部分思考

摘要 近几年,机器学习的大规模应用,以及算法的大幅度提升,吸引了学术界、工业界以及国防部门的大量关注。然而,对于机器学习算法本身的局限性,由于其快速的发展也不断的暴露了出来。因此,不论是人工智能领域的学者,还是安全领域的学者,都希望能够从不同的角度提高模型的泛化能力,自此之后,就拉开了一场在...

2019-01-11 14:26:31

阅读数 245

评论数 0

AI各领域产业发展现状

SIGAI推荐 SIGAI资源汇总 SIGAI人工智能平台全场六折 智能医疗 “So tomorrow, if AI can shape healthcare, it has to work through the regulations of healthcare … In fact...

2019-01-09 15:04:05

阅读数 448

评论数 0

提示
确定要删除当前文章?
取消 删除