轻量化神经网络综述

陈泰红  研究方向:机器学习、图像处理 导言 深度神经网络模型被广泛应用在图像分类、物体检测等机器视觉任务中,并取得了巨大成功。然而,由于存储空间和功耗的限制,神经网络模型在嵌入式设备上的存储与计算仍然是一个巨大的挑战。   目前工业级和学术界设计轻量化神经网络模型主要有4个方向:...

2018-09-28 10:33:28

阅读数:710

评论数:0

机器学习与深度学习核心知识点总结 写在校园招聘即将开始时

  导言 一年一度的校园招聘就要开始了,为了帮助同学们更好的准备面试,SIGAI 在今天的公众号文章中对机器学习、深度学习的核心知识点进行了总结。希望我们的文章能够帮助你顺利的通过技术面试,如果你对这些问题有什么疑问,可以关注我们的公众号,向公众号发消息,我们将会无偿为你解答。对于不想在近期内...

2018-08-09 14:34:52

阅读数:219

评论数:0

反向传播算法推导-卷积神经网络

导言– 在SIGAI之前的公众号文章“反向传播算法推导-全连接神经网络”中,我们推导了全连接神经网络的反向传播算法。其核心是定义误差项,以及确定误差项的递推公式,再根据误差项得到对权重矩阵、偏置向量的梯度。最后用梯度下降法更新。卷积神经网络由于引入了卷积层和池化层,因此情况有所不同。在今天这...

2018-08-08 11:57:32

阅读数:349

评论数:0

机器学习算法地图

很多同学在学机器学习和深度学习的时候都有一个感受:所学的知识零散、不系统,缺乏整体感,这是普遍存在的一个问题。在这里,SIGAI对常用的机器学习和深度学习算法进行了总结,整理出它们之间的关系,以及每种算法的核心点,各种算法之间的比较。由此形成了一张算法地图,以帮助大家更好的理解和记忆这些算法。如果...

2018-07-05 12:10:07

阅读数:840

评论数:4

自然场景文本检测识别技术综述

番外青蛇: 姐, 图像文本检测和识别领域现在的研究热点是什么? 白蛇: 白纸黑字的扫描文档识别技术已经很成熟,而自然场景图像文本识别的效果还不理想。倾斜字、艺术字、变形字、模糊字、形似字、残缺字、光影遮蔽、多语言混合文本等应用落地面临的技术难题还没被彻底解决。 青蛇: 文本检测模型CTPN...

2018-06-30 09:05:52

阅读数:3719

评论数:1

卷积神经网络的压缩和加速

原创声明:本文为 SIGAI 原创文章,仅供个人学习使用,未经允许,不能用于商业目的。   相关背景 为什么要对网络进行压缩和加速呢?最实际的原因在于当前存储条件和硬件的计算速度无法满足复杂网络的需求,当然也许十几年或更远的将来,这些都将不是问题,那么神经网络的压缩和加速是否仍有...

2018-06-26 10:29:21

阅读数:1421

评论数:1

从0到1:神经网络实现图像识别(中)

”. . .  we may have knowledge of the past and cannot control it; we may control the future but have no knowledge of it.” — Claude Shannon 1959 往者可知然...

2018-12-12 14:53:55

阅读数:69

评论数:0

视频语义分割介绍

摘要: 随着深度学习的发展,图像语义分割任务取得了很大的突破,然而视频语义分割仍然是一个十分具有挑战性的任务,本文将会介绍视频语义分割最近几年顶会上的一些工作。 1、基本任务介绍: 语义分割任务要求给图像上的每一个像素赋予一个带有语义的标签,视频语义分割任务是要求给视频中的每一帧图像上的每一...

2018-12-10 14:28:22

阅读数:36

评论数:0

Eager Mode,写在TensorFlow 2.0 到来之前

本文主要讲解了在编写基于TensorFlow的应用过程中如何使用Eager Mode。内容主要包括 Eager Mode简介 Eager Mode下的自动求导 在Eager Mode下创建一个模型并进行训练。 另外,本文还提供了基于TensorFlow底层API方式编...

2018-12-07 15:37:17

阅读数:37

评论数:0

从0到1:神经网络实现图像识别(上)

纸上得来终觉浅,绝知此事要躬行。 “神经网络”是“机器学习”的利器之一,常用算法在TensorFlow、MXNet计算框架上,有很好的支持。 为了更好的理解与使用这件利器,我们可以不借助计算框架,从零开始,一步步构建模型,实现学习算法,并在一个图像识别数据集上,训练这个模型,再验证模型预测的准...

2018-12-05 16:14:36

阅读数:55

评论数:1

Large scale GAN training for high fidelity natural image synthesis解读

《Large scale GANtraining for high fidelity natural image synthesis》这篇文章对训练大规模生成对抗网络进行了实验和理论分析,通过使用之前提出的一些技巧,如数据截断、正交正则化等,保证了大型生成对抗网络训练过程的稳定性。本文训练出的模...

2018-12-04 10:29:57

阅读数:128

评论数:0

理解计算:从根号2到AlphaGo番外篇——眼见未必为实--漫谈图像隐写术

有很多技术都致力于保护信息安全,其中有两类技术最为著名,一个是密码学,另一类就是密写术,也称为隐写术。应邀借此机会向大家谈谈隐写术这个很多人都不太熟悉的领域。本文将带领大家了解隐写技术发展的历史,现代隐写术的基本方法及问题。最重要的是,我将带领大家进一步了解是深度生成模型(生成对抗网络)技对隐写...

2018-11-30 17:29:00

阅读数:97

评论数:0

时空建模新文解读:用于高效视频理解的TSM

  接着之前的《浅谈动作识别TSN,TRN,ECO》,来谈谈最近 MIT和IBM Watson 的新文 Temporal Shift Module(TSM)[1]。   Something-SomethingV1 数据集上的个算法性能对比 看看上图,文章的主要贡献一目了然: 对比主...

2018-11-28 15:50:06

阅读数:102

评论数:0

集成学习综述-从决策树到XGBoost

在之前缅怀金大侠的文章“永远的金大侠-人工智能的江湖”中提到:集成学习是机器学习中一种特殊的存在,自有其深厚而朴实的武功哲学,能化腐朽为神奇,变弱学习为强学习,虽不及武当和少林那样内力与功底深厚。其门下两个主要分支-Bagging和Boosting,各有成就,前者有随机森林支撑门面,后者有AdaB...

2018-11-27 12:05:41

阅读数:55

评论数:0

活体检测新文by京东金融:利用多帧人脸来预测更精确的深度

接着上次的《活体检测Face anti-spoofing综述》,再来讲讲arXiv上新挂的文章:   京东金融和中科院联合发表的“Exploiting temporal and depth information for multi-frame face anti-spoofing”[1] ...

2018-11-21 12:04:05

阅读数:110

评论数:0

双线性汇合(bilinear pooling)在细粒度图像分析及其他领域的进展综述

作者简介: 张皓 南京大学计算机系机器学习与数据挖掘所(LAMDA) 研究方向为计算机视觉和机器学习,特别是视觉识别和深度学习 个人主页:goo.gl/N715YT   细粒度图像分类旨在同一大类图像的确切子类。由于不同子类之间的视觉差异很小,而且容易受姿势、视角、图像中目标位置等影响...

2018-11-20 09:39:55

阅读数:197

评论数:0

编写基于TensorFlow的应用之构建数据pipeline

本文主要以MNIST数据集为例介绍TFRecords文件如何制作以及加载使用。所讲内容可以在SIGAI 在线编程功能中的sharedata/intro_to_tf文件夹中可以免费获取。此项功能对所有注册用户免费开放. 官网地址:www.sigai.cn, 推荐使用chrome浏览器 ...

2018-11-16 18:43:50

阅读数:50

评论数:0

机器学习在信用评分卡中的应用

作者简介: 张中峰 中科院博士毕业,研究方向为信息检索、机器学习;曾任职于百度、亿赞普,有多年计算广告相关的算法研发经验;前融360风控技术副总监,负责线上小额信贷产品的风控算法,包括反欺诈策略及模型、信用评分卡等。 互联网金融,特别是P2P信贷在过去几年可以说经历了大起大落的过山车。在经历...

2018-11-14 17:46:24

阅读数:136

评论数:0

图像分割技术介绍

图像分割(image segmentation)技术是计算机视觉领域的个重要的研究方向,是图像语义理解的重要一环。图像分割是指将图像分成若干具有相似性质的区域的过程,从数学角度来看,图像分割是将图像划分成互不相交的区域的过程。近些年来随着深度学习技术的逐步深入,图像分割技术有了突飞猛进的发展,该技...

2018-11-13 10:39:48

阅读数:162

评论数:0

深度强化学习综述(上)

人工智能中的很多应用问题需要算法在每个时刻做出决策并执行动作。对于围棋,每一步需要决定在棋盘的哪个位置放置棋子,以最大可能的战胜对手;对于自动驾驶算法,需要根据路况来确定当前的行驶策略以保证安全的行驶到目的地;对于机械手,要驱动手臂运动以抓取到设定的目标物体。这类问题有一个共同的特点:要根据当前的...

2018-11-08 15:52:08

阅读数:630

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭