排序:
默认
按更新时间
按访问量

机器学习与深度学习核心知识点总结 写在校园招聘即将开始时

  导言 一年一度的校园招聘就要开始了,为了帮助同学们更好的准备面试,SIGAI 在今天的公众号文章中对机器学习、深度学习的核心知识点进行了总结。希望我们的文章能够帮助你顺利的通过技术面试,如果你对这些问题有什么疑问,可以关注我们的公众号,向公众号发消息,我们将会无偿为你解答。对于不想在近期内...

2018-08-09 14:34:52

阅读数:20

评论数:0

反向传播算法推导-卷积神经网络

导言– 在SIGAI之前的公众号文章“反向传播算法推导-全连接神经网络”中,我们推导了全连接神经网络的反向传播算法。其核心是定义误差项,以及确定误差项的递推公式,再根据误差项得到对权重矩阵、偏置向量的梯度。最后用梯度下降法更新。卷积神经网络由于引入了卷积层和池化层,因此情况有所不同。在今天这...

2018-08-08 11:57:32

阅读数:36

评论数:0

机器学习算法地图

很多同学在学机器学习和深度学习的时候都有一个感受:所学的知识零散、不系统,缺乏整体感,这是普遍存在的一个问题。在这里,SIGAI对常用的机器学习和深度学习算法进行了总结,整理出它们之间的关系,以及每种算法的核心点,各种算法之间的比较。由此形成了一张算法地图,以帮助大家更好的理解和记忆这些算法。如果...

2018-07-05 12:10:07

阅读数:356

评论数:3

自然场景文本检测识别技术综述

替换高清大图番外青蛇: 姐, 图像文本检测和识别领域现在的研究热点是什么?白蛇: 白纸黑字的扫描文档识别技术已经很成熟,而自然场景图像文本识别的效果还不理想。倾斜字、艺术字、变形字、模糊字、形似字、残缺字、光影遮蔽、多语言混合文本等应用落地面临的技术难题还没被彻底解决。青蛇: 文本检测模型CTPN...

2018-06-30 09:05:52

阅读数:537

评论数:1

卷积神经网络的压缩和加速

原创声明:本文为 SIGAI 原创文章,仅供个人学习使用,未经允许,不能用于商业目的。 相关背景为什么要对网络进行压缩和加速呢?最实际的原因在于当前存储条件和硬件的计算速度无法满足复杂网络的需求,当然也许十几年或更远的将来,这些都将不是问题,那么神经网络的压缩和加速是否仍有研究的必要呢?答案是肯定...

2018-06-26 10:29:21

阅读数:377

评论数:1

AI时代大点兵-国内外知名AI公司2018年最新盘点

SIGAI飞跃计划第二期等你来挑战!(点击有惊喜)   导言 据腾讯研究院统计,截至2017年6月,全球人工智能初创企业共计2617家。美国占据1078家居首,中国以592家企业排名第二,其后分别是英国,以色列,加拿大等国家。本文中选取了国外和国内部分有代表性的AI产业链条上相关公司就行分...

2018-08-13 17:29:14

阅读数:2

评论数:0

理解Spatial Transformer Network

SIGAI飞跃计划第二期等你来挑战   概述 随着深度学习的不断发展,卷积神经网络(CNN)作为计算机视觉领域的杀手锏,在几乎所有视觉相关任务中都展现出了超越传统机器学习算法甚至超越人类的能力。一系列CNN-based网络在classification、localization、semant...

2018-08-10 18:58:22

阅读数:19

评论数:0

博客搬家

我的博客即将入驻“云栖社区”,诚邀技术同仁一同入驻。

2018-08-08 14:31:26

阅读数:14

评论数:0

机器学习和深度学习中值得弄清楚的一些问题

SIGAI飞跃计划第一期已经进行4周了,在这4周的学习中,同学们提出了不少好问题。在这里,我们将每周直播答疑的问题进行筛选和整理,写成今天的公众号文章,供大家参考。相信会对大家的学习和实践有所帮助! 问题1:线性回归的损失函数是凸函数的证明 假设有l个训练样本,特征向量为xi,标签值为...

2018-08-03 16:56:42

阅读数:45

评论数:0

神经网络的激活函数总结

导言 激活函数在神经网络中具有重要的地位。在SIGAI之前的公众号文章“理解神经网络的激活函数”中,我们回答了3个关键的问题: 为什么需要激活函数? 什么样的函数能用作激活函数? 什么样的函数是好的激活函数? 这篇文章从理论的角度介绍了激活函数的作用。承接上篇,在今天这篇文章中,SIGA...

2018-07-30 20:36:48

阅读数:40

评论数:1

基于内容的图像检索技术综述 传统经典方法

SIGAI特约作者 manyi 视觉算法工程师 今天我们来介绍一下图片检索技术,图片检索就是拿一张待识别图片,去从海量的图片库中找到和待识别图片最相近的图片。这种操作在以前依靠图片名搜图的时代是难以想象的,直到出现了CBIR(Content-based image retrieval)技术,依靠...

2018-07-27 17:45:00

阅读数:19

评论数:0

随机森林概述

在SIGAI之前的公众号文章“大话AdaBoost算法”中我们介绍了集成学习的思想以及Boosting算法,今天的文章中我们将为大家介绍另外一种集成学习算法-随机森林。随机森林由多棵决策树组成,采用多棵决策树联合进行预测可以有效提高模型的精度。这些决策树用对训练样本集随机抽样构造出的样本集训练得到...

2018-07-25 16:52:14

阅读数:159

评论数:4

关于感受野的总结

感受野是卷积神经网络里面最重要的概念之一,为了更好地理解卷积神经网络结构,甚至自己设计卷积神经网络,对于感受野的理解必不可少。 一、定义 感受野被定义为卷积神经网络特征所能看到输入图像的区域,换句话说特征输出受感受野区域内的像素点的影响。 比如下图(该图为了方便,将二维简化为一维),这个...

2018-07-24 10:33:38

阅读数:74

评论数:4

流形学习概述

  数据降维问题 在很多应用中,数据的维数会很高。以图像数据为例,我们要识别32x32的手写数字图像,如果将像素按行或者列拼接起来形成向量,这个向量的维数是1024。高维的数据不仅给机器学习算法带来挑战,而且导致计算量大,此外还会面临维数灾难的问题(这一问题可以直观的理解成特征向量维数越高,机...

2018-07-20 21:40:44

阅读数:30

评论数:1

【技术短文】基于深度负相关学习的人群计数方法

SIGAI特约作者 cnns . 阿姆斯特丹大学在读博士 研究方向:深度学习,计算机视觉 人群计数监控视频中的人群自动计数有着重要的社会意义和市场应用前景。充分利用兴趣区域的人数统计信息可以为一些人群密集的商场、车站、广场等公共场合的安全预警提供有效的指导。还可以带来经济效益,例如,提高...

2018-07-19 11:25:07

阅读数:55

评论数:1

人脸检测算法之 S3FD

SIGAI特约作者BaomingAI公司算法研究员导言自从anchor-based method出现之后,物体检测基本上就离不开这个神奇的anchor了。只因有了它的协助,人类才在检测任务上第一次看到了real time的曙光。但是,夹杂在通用物体检测中,某些特定物体的检测任务由于应用量巨大,以及...

2018-07-16 15:47:38

阅读数:180

评论数:4

理解计算:从根号2到AlphaGo 第3季 神经网络的数学模型

文章《理解计算:从根号2到AlphaGo 第3季  神经网络的数学模型》系SIGAI原创,仅供个人学习使用,未经允许,不得转载,不能用于商业目的。如需获取原版PDF全文,可搜索关注VX公众号SIGAICN。理解计算:从根号2到AlphaGo第3季 神经网络的数学模型SIGAI 特邀作者:twinl...

2018-07-14 08:09:50

阅读数:288

评论数:3

怎样成为一名优秀的算法工程师

原创声明:本文为 SIGAI 原创文章,仅供个人学习使用,未经允许,不得转载,不能用于商业目的。 怎样成为一名优秀的算法工程师?这是很多从事人工智能学术研究和产品研发的同学都关心的一个问题。面对市场对人才的大量需求与供给的严重不足,以及高薪水的诱惑,越来越多的人开始学习这个方向的技术,或者打算向人...

2018-07-12 10:54:25

阅读数:151

评论数:0

机器学习算法地图(高清图)

2018-07-10 19:44:56

阅读数:92

评论数:0

生成式对抗网络模型综述

关注微信公众号SIGAICN,可获取PDF全文摘要生成式对抗网络模型(GAN)是基于深度学习的一种强大的生成模型,可以应用于计算机视觉、自然语言处理、半监督学习等重要领域。生成式对抗网络最最直接的应用是数据的生成,而数据质量的好坏则是评判GAN成功与否的关键。本文介绍了GAN最初被提出时的基本思想...

2018-07-10 14:02:01

阅读数:111

评论数:3

提示
确定要删除当前文章?
取消 删除
关闭
关闭