『数据中心』降低PUE值4种方法

随着数据中心的越建越多,规模越来越大,能耗也随之大幅增加。根据第三方数据显示,2017年全球数据中心能耗达到4162亿千瓦时,相当于全球总用电量的2%。在中国,数据中心能耗高速增长,2016年中国数据中心总耗电量超过1200亿千瓦时,该数字超过了三峡大坝2016年全年的总发电量(约1000亿千瓦时),且而每年10%以上的能耗增长率给节能减排和数据中心运营成本带来了巨大挑战,降低数据中心PUE和建设绿色数据中心成为必然方向。

工信部在2017年4月发布的《关于加强“十三五”信息通信业节能减排工作的指导意见》中指出:“十二五”期间新建大型数据中心的能耗效率(PUE)要普遍低于1.5;到2020年,新建大型、超大型数据中心的能耗效率(PUE)值必须达到1.4 以下。2018年3月,工信部首次公布的《全国数据中心应用发展指引》中称:全国超大型数据中心平均PUE(平均电能使用效率)为1.50,大型数据中心平均PUE为1.69。而根据“十三五规划”,到2020年,新建大型云计算数据中心PUE值将不得高于1.4。

PUE,英文Power Usage Effectiveness,国际比较通行的数据中心能耗效率的衡量标准。PUE值是数据中心所有消耗能源与IT负载消耗的能源比。PUE值越接近于1,表示数据中心的绿色化程度越高。

数据中心电力消耗最大的三个方面分别是机房空调、IT设备和UPS电源,能达到数据中心总电力消耗的93%。因此,数据中心的节能问题也要围绕这三个方面展开,比如机房空调方面,有效的利用外部冷空气、水等自然冷源就是一个非常经济的办法,除此之外,控制好机房热源的流动;控制到机房的温度也是非常有效且经济的办法。

充分利用自然冷源

1

风、水、空气等自然冷源是大自然的“馈赠”, 对于数据中心来说,这些既环保又省钱,用之不竭的资源可以说是最佳的节能“利器”。由于自然冷源的多种优势,已经被广泛应用到数据中心的节能上。比如微软的海底数据中心、阿里的千岛湖数据中心、腾讯的贵阳数据中心都是非常好的利用自然冷源的案例。

作为国内第一个采用湖水作为自然冷源的数据中心——浙江千岛湖数据中心,受到国内IT和空调界的高度重视。该工程节能效果十分显著——2017年7月,当室外气温高达40℃时,该数据中心的机械制冷设备也无需开机。但对该工程是否会影响千岛湖水质,破坏生态环境有所担心,事实上该工程在设计过程中己经高度重视这一问题,并采取了相应措施。另外一个采用湖水作为自然冷源的数据中心——湖南东江湖大数据中心一期己开始有用户入驻,该工程由于取水于湖水下泄10km处,水温年平均温度低于13℃,因此可以完全在生态友好的条件下运行。该工程采用了多项节能技术,被国内外IT业界和空调界关注。

千岛湖数据中心

选择高纬度的严寒地区

2

选址对于数据中心来说非常的重要,不同的选址可能就决定了数据中心的成败。在节能方面也是如此,越来越多的企业,比如谷歌、苹果、Facebook开始将新建数据中心选址在高纬度、高海拔的地区,甚至是选址在接近北极的地区。

我国地域广阔,从北到南,从东到西,跨越了多个气候区。图2为《民用建筑设计通则》给出的我国建筑气候区划图。对于某个具体的数据中心,如果采用自然冷却,除了要了解项目所在地所属的气候区,更关键的是要掌握当地历年的气象参数。

我国建筑气候区划图

水侧自然冷却各省会城市PUE如下图所示:PUE值最低为哈尔滨市为1.254,海口最高为1.356。中国大陆地区PUE值分布趋势是,纬度高度地区PUE值低于纬度低地区PUE值,同纬度西部地区PUE值低于同纬度东部地区PUE值。

大陆城市水侧自然冷却PUE排序

利用可再生能源

3

太阳能、地热能、风能、海洋能、生物质能等新能源已成为数据中心寻求替代传统供电模式的首选。在新能源的应用上,创新型的IT公司比传统的运营商或DC数据中心服务商更加积极。比如美国的苹果、谷歌,国内的腾讯、阿里等公司走在了传统数据中心的前列。

风能和太阳能具有间歇性、波动性特点,数据中心通过能源购买协议(PPA)来绿化整个电网。简单来说,就是数据中心运行方与可再生能源电力供应商签订一份长年可再生能源的供能合同,确保可再生能源能够源源不断地注入电网,于是接入电网的数据中心就可以间接使用可再生能源。

谷歌与NextTra(售电公司)签署了第一个20年的PPA协议,给位于Council Bluffs的数据中心购买了114MW的风电。2013年6月,谷歌在瑞典购买了72MW风电,以便给位于芬兰的数据中心提供可再生能源(北欧五国中除了冰岛,挪威、瑞典、丹麦和芬兰已经实现电网互联)。谷歌已经是世界上最大的可再生能源购买企业,截至到目前,谷歌已经在全球签署了20项购买协议,总装机容量达到2.6GW,预计给可再生能源发电商带来35亿美元的投资。这些分布在世界各地的可再生能源将为谷歌的数据中心提供清洁的电力。

提高人员节能意识

4

除了加强全体员工节能减排的意识外,还可以通过一下几种方法:针对机柜增加盲板;针对机房精密空调进行改造,使其具有天然冷却功用—选用氟泵节能体系;树立机房散热及气流组织模型;针对机柜设备自动送风元件—ADU;针对机柜进行冷通道封闭;机房增加新风体系;规划一套机房全体监控体系,几种节能改造办法,关于老旧数据中心量体裁衣、发现问题,剖析出最恰当的详细解决办法,并经过高智能化的监控和精密化办理保护,在确保高可用性和高可靠性的前提下,最大化完成数据中心机房能耗的节能优化。 

资料免费送(点击链接下载)

史上最全,数据中心机房标准及规范汇总(下载)

数据中心运维管理 | 资料汇总(2017.7.2版本)                                                    

加入运维管理VIP群(点击链接查看)

《数据中心运维管理》VIP技术交流群会员招募说明

扫描以下二维码加入学习群

### 解决PyCharm无法加载Conda虚拟环境的方法 #### 配置设置 为了使 PyCharm 能够成功识别并使用 Conda 创建的虚拟环境,需确保 Anaconda 的路径已正确添加至系统的环境变量中[^1]。这一步骤至关重要,因为只有当 Python 解释器及其关联工具被加入 PATH 后,IDE 才能顺利找到它们。 对于 Windows 用户而言,在安装 Anaconda 时,默认情况下会询问是否将它添加到系统路径里;如果当时选择了否,则现在应该手动完成此操作。具体做法是在“高级系统设置”的“环境变量”选项内编辑 `Path` 变量,追加 Anaconda 安装目录下的 Scripts 文件夹位置。 另外,建议每次新建项目前都通过命令行先激活目标 conda env: ```bash conda activate myenvname ``` 接着再启动 IDE 进入工作区,这样有助于减少兼容性方面的问题发生概率。 #### 常见错误及修复方法 ##### 错误一:未发现任何解释器 症状表现为打开 PyCharm 新建工程向导页面找不到由 Conda 构建出来的 interpreter 列表项。此时应前往 Preferences/Settings -> Project:...->Python Interpreter 下方点击齿轮图标选择 Add...按钮来指定自定义的位置。按照提示浏览定位到对应版本 python.exe 的绝对地址即可解决问题。 ##### 错误二:权限不足导致 DLL 加载失败 有时即使指定了正确的解释器路径,仍可能遇到由于缺乏适当的操作系统级许可而引发的功能缺失现象。特别是涉及到调用某些特定类型的动态链接库 (Dynamic Link Library, .dll) 时尤为明显。因此拥有管理员身份执行相关动作显得尤为重要——无论是从终端还是图形界面触发创建新 venv 流程均如此处理能够有效规避此类隐患。 ##### 错误三:网络连接异常引起依赖下载超时 部分开发者反馈过因网速慢或者其他因素造成 pip install 操作中途断开进而影响整个项目的初始化进度条卡住的情况。对此可尝试调整镜像源加速获取速度或是离线模式预先准备好所需资源包后再继续后续步骤。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值