浅谈DCIM平台的6化

摘要

本文抛开DCIM功能,重点阐述了支撑平台的实现,作为DCIM解决方案提供商,在深度理解国内各行业对DCIM系统功能需求的基础上,首先要考虑的问题不是各类功能的具体实现,而是什么样的一个平台能够有力支撑和快速响应客户不断更新、不断成熟的功能需求。


数据中心基础设施管理DCIM(Data Center Infrastructure Management)的概念在今年引入到国内以来,一直是数据中心运营与管理领域聚焦的一个热点,国内外不同的机构对DCIM有着不同的定义,不同的用户对其内涵及外延也有这不同的理解,目前没有组织或权威机构能给DCIM一个标准的定义,也没有用户主动提出一个关于DCIM的明确需求,虽然定义并非明确,理解也不完全一致,但是随着近几年整个社会发展对计算能力需求的迅速提升,带动了数据中心基础设施的迅速建设、扩容,迫切的需求还是快速的把DCIM从概念阶段推到落地,作为DCIM解决方案提供商、DCIM平台开发商,通过分析大量的客户需求,通过一个个项目的落地,逐步得出DCIM平台现阶段应该是一个平台化、架构微服务化、接口标准化、应用层模块化,流程引擎化,上层模型化的产品。


产品平台化

《数据中心基础设施管理技术白皮书》指出目前共同的观点是DCIM不只是一个软件,更是一个管理工具和方法,但作为DCIM解决方案提供商,管理工具和方法会通过产品和服务的方式提供给用户,本文要阐述的就是解决方案提供商要为客户提供一个怎样的产品,那么我们首先确定的观点是DCIM产品是一个灵活的平台(Platform),而非一个固定的系统(System),DCIM本身不是一个标准,每个客户的需求是不完全一致的,且客户需求的功能不是随着产品的交付完成就完成的,如果做成固定的系统(System),客户会长期的依赖厂商,不能灵活的根据当前的需求搭建自己的功能模块及工作流程,这种设计是从已知的功能出发,产品只能满足客户当前的需求,不能持续的满足客户未来一段时间内的需求,而平台(Platform)为出发点的设计思路,是要能够迅速满足客户已知与未知的同类别功能需求。当然作为产品提供商,也会尽量避免为每个客户提供一套个性化且不可在其他客户复用的产品,这样会极大的降低企业的投入产出比。所以产品平台化是客户与厂商共同的需求。那么,一个怎样架构的平台才能满足双方的需求呢?


架构微服务化

对DCIM定义与需求的不确定性决定了很难做一款一步到位的产品,落地投产只是满足了当前或者说未来一段时间内的需求,客户需求还会不断变化,持续增长这就导致产品功能模块,接口等各层面还会不断的变化,所以产品的可快速扩展性应该是产品的最重要特性之一,微服务作为一项在云中部署应用和服务的新技术已成为当下最新的热门话题,已在很多应用场景下证实它的先进性,它的基本思想在于考虑围绕着业务领域组件来创建应用,这些应用可独立地进行开发、管理和加速。在分散的组件中使用微服务(云)架构和平台,使部署、管理和服务功能交付变得更加简单,作为DCIM解决方案提供商,只有选择和开发一套适合行业现状的微服务架构,才能为客户提供一款可扩展性、模块化、标准化以及是开放的通信架构的产品。


接口标准化

DCIM不是升级版的动环,更不是监控系统,DCIM是管理(Management)平台,作为一个管理平台,对外接口是设计中要考虑的重要问题之一,这不仅包括平台自身微服务架构与各模块间的接口,还包括与外部各系统间的接口,只有合理的设计才能确保产品的性能、数据的时效性以及平台的独立性、灵活性,应用间的消息特别是异步消息虽然可以通过MQ的方式实现,但是解决不了平台独立,接口灵活的问题,为了确保自身的独立性,接口必须标准化,创建接口适配层是目前解决该类问题的有效方式之一,设计独立的接口适配层,并池化之,让所有非标准接口在这里标准化,对平台来说所有接入的都是标准接口,减少平台接口开发对平台带来的不确定影响,提升了接入效率,确保了平台的独立性,灵活性。


应用层模块化

应用层是指由相对独立的基于平台的功能模块集合,他们可能运行在平台之上也可能以微服务的形式存在,模块本身也可能由模块组成,多个或独立的模块组成产品的功能,松耦合的模块设计是产品灵活性、可扩展性的重要依托,这样客户在新增功能,变更功能都不会对平台和其他功能带来影响,对于厂商,能为不同的客户快速部署具有不同功能的产品。


流程、报表引擎化

拿流程来说,作为一个管理平台,支撑运维工作流是其最基础的功能,但不同的客户工作流程是不同的,相同的客户也会随时更新工作流,如果不是基于流程引擎的流程开发,是客户的噩梦更是厂商的噩梦,流程只有开发者可以创建和变更,客户只是固定流程的使用者,不能根据自己的需求方便的创建变更流程,从目前接触到的大多数客户来说,是无法接受的,对厂商来说也会陷入流程开发的泥潭,开发适合DCIM平台的流程引擎是解决该问题的最有效方式,也是提升客户满意度的最有效的手段,报告报表亦如此。


上层模型化

DCIM作为一个管理平台,其核心作用应该是为管理者提供决策依据,平台所掌握的多维度数据只通过简单的统计分析是很难得到真实有效的输出,大数据及人工智能的应用目前来说是通过深度的数据挖掘形成决策依据的最好手段之一,但不论是传统的数据统计分析,还是大数据方式,所使用的算法模型才是核心,从某种意义上来讲,DCIM平台所拥有算法模型多少是衡量其价值的重要参考,也是厂商能力的重要体现。


相关下载


史上最全,数据中心机房标准及规范汇总(下载)

数据中心运维管理 | 资料汇总(2017.7.2版本)


加入学习群扫描以下二维码或者添加微信:wang2017bj


数据集介绍:野生动物与家畜多目标检测数据集 数据集名称:野生动物与家畜多目标检测数据集 数据规模: - 训练集:1,540张图片 - 验证集:377张图片 - 测试集:316张图片 分类类别: Brown-bear(棕熊)、Chicken(鸡)、Fox(狐狸)、Hedgehog(刺猬)、Horse(马)、Mouse(老鼠)、Sheep(绵羊)、Snake(蛇)、Turtle(龟)、Rabbit(兔)及通用object(物体)共11个类别 标注格式: YOLO格式标注,包含归一坐标与类别索引,支持目标检测模型训练 数据特性: 涵盖航拍与地面视角,包含动物个体及群体场景,适用于复杂环境下的多目标识别 农业智能管理: 通过检测家畜(鸡/马/绵羊等)数量及活动状态,辅助畜牧场自动管理 生态监测系统: 支持野生动物(棕熊/狐狸/刺猬等)识别与追踪,用于自然保护区生物多样性研究 智能安防应用: 检测农场周边危险动物(蛇/狐狸),构建入侵预警系统 动物行为研究: 提供多物种共存场景数据,支持动物群体交互行为分析 高实用性标注体系: - 精细标注包含动物完整轮廓的边界框 - 特别区分野生动物与家畜类别,支持跨场景迁移学习 多维度覆盖: - 包含昼间/复杂背景/遮挡场景 - 涵盖陆地常见中小型动物与禽类 - 提供通用object类别适配扩展需求 工程适配性强: - 原生YOLO格式适配主流检测框架(YOLOv5/v7/v8等) - 验证集与测试集比例科学,支持可靠模型评估 生态价值突出: - 同步覆盖濒危物种(龟类)与常见物种 - 支持生物多样性保护与农业生产的双重应用场景
内容概要:本文档详细介绍了Python实现TSO-ELM(金枪鱼群优算法优极限学习机)多输入单输出回归预测的项目实例。极限学习机(ELM)作为一种快速训练的前馈神经网络算法,虽然具有训练速度快、计算简单等优点,但也存在局部最优解和参数敏感性的问题。金枪鱼群优算法(TSO)通过模拟金枪鱼群体觅食行为,具有较强的全局搜索能力。将TSO与ELM结合形成的TSO-ELM模型,可以优ELM的输入层和隐藏层之间的权重,提高回归预测的准确性。项目包括数据预处理、TSO优、ELM回归模型训练和预测输出四个主要步骤,并提供了详细的代码示例。; 适合人群:对机器学习、优算法有一定了解的数据科学家、算法工程师和研究人员,特别是那些希望深入理解智能优算法在回归预测任务中的应用的人群。; 使用场景及目标:① 提升ELM在多输入单输出回归预测中的性能,特别是在处理非线性问题时的预测精度;② 解决ELM中的局部最优解和参数敏感性问题;③ 优ELM的隐层权重和偏置值,提高模型的表达能力和预测能力;④ 在金融、气象、能源、医疗、交通等领域提供更准确的预测模型。; 阅读建议:本文档不仅提供了理论解释,还包含详细的代码实现,建议读者在阅读过程中结合代码进行实践,理解TSO-ELM模型的工作原理,并尝试调整参数以优预测效果。同时,读者应关注TSO算法在高维复杂问题中的应用挑战,思考如何改进优策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值