30、量子计算:格罗弗算法振幅放大与应用

量子计算:格罗弗算法振幅放大与应用

1. 格罗弗算法离散事件随机化的振幅放大

1.1 基本方法

在特定步骤后,基于 U U S S 和迭代算子对 (n + 1) 量子比特状态进行振幅放大是可行的。这种调整后的方法通过额外一个量子比特的代价,利用 oracle 查询可靠地获取解决方案。

1.2 最后阶段变化

该方法无需第二个量子比特就能保证及时得到解决方案,但详细解释较为困难。为实现理想终态,需在最后阶段进行调整。
首先,研究转换 $Q(\phi, \tau) = -U S_{\phi}^0 U^{-1}S_{\tau}^G$ 的通用特性,其中 $\phi$ 和 $\tau$ 是任意角度。
对于任意量子态 $|v\rangle$,有:
$U S_{\phi}^0 U^{-1}|v\rangle = |v\rangle - (1 - e^{i\phi})\langle v | U | 0\rangle U | 0\rangle$
推导过程如下:
[
\begin{align }
U S_{\phi}^0 U^{-1}|v\rangle&= U S_{\phi}^0 \left(\sum_{i = 1}^{N - 1} \langle v | U | i\rangle|i\rangle + \langle v | U | 0\rangle|0\rangle\right)\
&= U \left(\sum_{i = 1}^{N - 1} \langle v | U | i\rangle|i\rangle + \langle v | U e^{i\phi}

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值