【GitHub项目推荐--15个推荐开源免费图像标注工具】【转载】

图像标注是向图像添加标签或注释的元数据,使图像上的内容具有上下文含义。这个过程在机器学习中具有重要意义,助于在训练视觉模型过程中准确地识别图像中的元素。

视觉模型最终的用途也非常广泛,例如,帮助车辆识别道路上的不同物体或障碍物、通过对医学图像的识别帮助疾病检测和诊断。

本文主要推荐一些较好的开源免费的图像标注工具。

01 Makesense.ai

http://makesense.ai/

https://github.com/SkalskiP/make-sense

Makesense.ai是一个免费的在线跨平台工具,用于标记照片,非常适合小型计算机视觉深度学习项目。它简化了数据集的准备,标签可以以多种格式下载。该应用程序使用TypeScript编写,基于React/Redux框架开发。它集成了YOLOv、在COCO数据集上预训练的SSD和PoseNet等先进的AI模型,可以自动化图像标注。其中AI功能基于TensorFlow.js框架,因为照片不需要传输到服务器,可确保数据隐私安全。



02 Labelme

https://github.com/labelmeai/labelme

Labelme是一个基于Python的图像标注工具,支持各种标注类型,并提供自定义GUI。可以导出VOC和COCO格式的数据集,用于语义和实例分割。

功能特征

  • 支持多边形、矩形、圆形、直线、点和图像级标志注释

  • 适用于Ubuntu、macOS和Windows

  • 标注信息保存为JSON文件

  • 高级用法示例

  • 将标记分配给整个图像

  • 将标注指定给单个面

03 Xtreme1

https://github.com/xtreme1-io/xtreme1

Xtreme1是一个用于标注多模式训练数据的开源平台,提高了数据注释、管理和本体管理的效率。其人工智能工具旨在提高2D/3D对象检测、3D实例分割和激光雷达相机融合项目的效率。

功能特征

  • 支持图像、3D LiDAR和2D/3D传感器融合数据集的数据标注

  • 内置预标记和交互式模型支持2D/3D对象检测、分割和分类

  • 可配置的本体中心,用于一般类(具有层次结构)和属性,用于模型训练

  • 数据管理和质量监测

  • 查找和修复标签错误的工具

  • 模型结果可视化以协助模型评估

  • 用于大型语言模型的RLHF(beta版࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值