深度学习
文章平均质量分 94
贾小树
这个作者很懒,什么都没留下…
展开
-
论文阅读:Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
文章目录1、论文总述2、Why does batch normalization work3、BN加到卷积层之后的原因4、加入BN之后,训练时数据分布的变化5、与BN配套的一些操作参考文献1、论文总述本篇论文提出了一个对CNN发展影响深远的操作:BN。BN是对CNN中间层feature map在激活函数前进行归一化操作,让他们的分布不至于那么散,这样的数据分布经过激活函数之后更加有效,不至于进入到Tanh和 Sigmoid的饱和区, 至于RELU 激活函数也有一定的效果。论文的动机是为了改善CNN中的原创 2021-03-30 10:48:22 · 534 阅读 · 0 评论 -
论文阅读:Network In Network
文章目录1、论文总述2、不加激活函数的CNN如何补偿非线性3、全局平均池化代替全连接层的优势4、dropout很重要5、Global Average Pooling比全连接好么6、feature map可视化参考文献1、论文总述笔者最近毕业论文写完处于一段空闲期,就想看几本书和以前落下的一些论文。本论文是2014年的一篇工作,好多年前了。。主要的创新是把多层感知机MLP加进了CNN中,用来提升CNN的非线性表达能力,作者认为没有激活函数的CNN是一个线性模型,特征表达能力不强,所以就想在每个featu原创 2021-03-18 22:27:43 · 202 阅读 · 0 评论 -
CNN中的padding如何影响位置学习
最近在知乎上看到大家都在说CNN学习目标的位置时是根据padding来学习的,下面是利用C++实现的矩阵之间的卷积运算注: 有个假设就是,认为feature map中的1位背景,4567是前景1、feature map和卷积核都不带padding例1:feature map为4维矩阵,卷积核为3维目标在中心时:目标向左上角平移:目标向右下角平移:例2:feature map为6...原创 2020-03-27 01:15:56 · 863 阅读 · 0 评论 -
论文阅读:Understanding the Effective Receptive Field in Deep Convolutional Neural Networks
1、论文总述这篇论文主要研究的是有效的感受野,发现有效的感受野只是理论感受野的一部分,并且呈高斯分布,理论感受野可以大于原图,但有效的感受野一般都小于原图尺寸,另一个有意思的地方是有效感受野的大小经过训练之后是可以变大的,论文中有实验表明。记录下这篇论文,并不是因为学到很多东西(当然这篇论文里有些东西,但理解不了),而是因为感受野这个东西很重要,好多网路都是设计了有效的感受野,让其可以覆盖目...原创 2019-09-23 21:08:25 · 5638 阅读 · 6 评论 -
卷积(convolution)和互相关(cross-correlation)
版权声明:本文为博主原创文章,...原创 2019-07-10 09:49:27 · 1174 阅读 · 1 评论