Algorithm learn
文章平均质量分 92
贝才
这个作者很懒,什么都没留下…
展开
-
Bundle adjustment学习
今天学习了稀疏的光束平差法,基于上一篇博文Levenberg–Marquardt算法学习,这里对学习内容做一个理论梳理。本次内容包括:BA简介BA迭代步长的数学推导稀疏BA迭代步长的算法求解过程1.BA简介 摄像机在静态环境中移动,得到不同时刻拍摄的多幅图像。假设这些图像是同一刚性物体的投影,则可由图像特征对应关系估计出摄像机的运动参数。在计算机视觉中 ,这一过程称转载 2017-06-07 11:48:20 · 1256 阅读 · 0 评论 -
Levenberg–Marquardt算法学习
本次是对Levenberg–Marquardt的学习总结,是为之后看懂sparse bundle ajdustment打基础。这篇笔记包含如下内容:回顾高斯牛顿算法,引入LM算法惩罚因子的计算(迭代步子的计算)完整的算法流程及代码样例1. 回顾高斯牛顿,引入LM算法 根据之前的博文:Gauss-Newton算法学习 假设我们研转载 2017-06-07 11:50:01 · 2135 阅读 · 0 评论 -
插值算法
线性插值1、定义:线性插值法是指使用连接两个已知量的直线来确定在这两个已知量之间的一个未知量的值的方法。2、过程:已知二维直角坐标系中的两点A(x0,y0)与B(x1,y1),要得到[x0,x1]区间内某一位置x在直线上的值。根据图中所示,我们得到两点式直线方程: 解出y的方程,也就是x的未知值,有:这样,上式就可以表示成为:原创 2018-01-10 16:26:40 · 14465 阅读 · 0 评论