1 Processing of Metal foam
大部分制备方法最初是基于铝的,但可以拓展。
Ashby, Eans, Fleck, Gibson Hutchinson, Wadley(2000) Metal Foam: A Design Guide, Butterworth Heinemann
- Bubbling of gas into molten Al*(2000, Gibson)*
向融化的铝中注入气体
需要添加气泡稳定剂,例如Ca, SiC, A l 2 O 3 Al_2O_3 Al2O3,增加了液态铝的黏度viscosity,使得气泡可以稳定存在,reducing drainage
这种方法制备出来的泡沫有密度梯度(density gradient),底部的泡沫更小一点。
- Combine metal and T i H 2 TiH_2 TiH2 powder, consolidate and heat*(2000, Gibson)*
T i H 2 TiH_2 TiH2在300摄氏度左右就会分解,铝在660摄氏度左右会融化,在300摄氏度左右会软化。
-
T i H 2 TiH_2 TiH2 powder in molten AI
类似上面的方法,但是把 T i H 2 TiH_2 TiH2直接加到融化的铝中。
-
Replication by Casting
向open cell polymer中加入沙子,把polymer聚合物烧掉,加入金属,去掉沙子,done
-
气相沉积Vapour deposition
nickle foam, 可以制备 metal-on-top 泡沫
-
Extrapped gas expansion
高压下注入惰性气体,挤压,加热膨胀。制备三明治结构的平板
-
空心微球合成烧结Hollow sphere synthesis and sintering
这个空心微球的制备方法值得借鉴
2 其他泡沫
碳泡沫carbon foams
heat a polymer foam to high temperature in an inert atmosphere
similar to biocarbon templates or carbonfibers
陶瓷泡沫ceramic foams
infiltrate open cell polymer foam with ceramic slurry , fire polymer burns off leaving ceramic foam with hollow cell walls
or doing CVD process onto carbon foam
玻璃泡沫Glass foams
similar process to polymer foams
3D Lattice materials
way to process polymer lattices:
- injection of molding
- 3D printing
- snap, fit it to 2D,即分离出一个一个的2D图形,制备出来后再合成装配
- micro truss from self-propagating*(2008, Jacobsen, Barvosa-Carter)*
wat to make metal lattices:
基本思路就是做个聚合物的,然后烧掉灌进去。
3 Structure of Cellular Solids
2D honey combs: polygonal cells pack to fill plane, prismatic in 3rd direction
3D foams: polyhedral cells pack to fill space
3个影响性质的因素:
-
properties of solid 组成的物质
-
相对密度relative density (1-孔隙率)(much more important)
ρ ∗ ρ s = V s V T = 1 − p o r o s i t y \frac{\rho^*}{\rho_s}=\frac{V_s}{V_T}=1-porosity ρsρ∗=VTVs=1−porosity
经典值:Gibson认为相对密度<0.3的才认为是cellular material,大于0.8的认为是固体材料带了点孔,中间则是模糊地带。
collagen scaffolds: ρ ∗ ρ s \frac{\rho^*}{\rho_s} ρsρ∗≈0.005
typical polymer foams : 0.02 < ρ ∗ ρ s \frac{\rho^*}{\rho_s} ρsρ∗< 0.2
soft wood: 0.15 < ρ ∗ ρ s \frac{\rho^*}{\rho_s} ρsρ∗< 0.4
-
cell geometry 孔隙的几何形状(例如对称与否决定了是否各向同性)
- shape
- open or closed
- cell size: import to thermal property, but not important to mechanical property
unit cell
2D honey combs: 三角形、正方形、六边形等(顶点/边不同),同一个形状还可以以不同形式堆叠。
3D foam: rhombic dodecahedron + tetra kaidecahedron pack to fill space
hedron = face; do =2, tetra=4, deca = 10; (greek)
tetra kaideca hedron : pack in a bcc packing
如果表面张力是各向同性的, 你将气体注入以形成foam,孔隙将倾向于最小化表面积体积比(minimize surface area per unit volume)
Kelvin Tetrakaidecahedron shape(1887): single unit cell that minimize surface area per unit volume
Wearire-Phelan(1994):比Kelvin小0.3%,
Voroni model
foams are sometimes made by supersaturating a liquid with a gas, then reducing the pressure so that bubbles nucleate grow.
initially bubbles form spheres, as spheres grow and intersect, form polyhedral cells
each cell contains all points that are closer to its nucleation point than any other
成核-生长过程
边缘为两个核连线的中线,然后形成包络。
每个孔隙内的点都是距离该核最近的点(相比距离其他的核而言)
但此情况下会形成很小的孔隙,如果加上限定最小尺寸的限制,会得到更平均的结构
无最小限制 | 限制核之间的最小间距 |
---|---|