N皇后问题
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Problem Description
在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上。
你的任务是,对于给定的N,求出有多少种合法的放置方法。
你的任务是,对于给定的N,求出有多少种合法的放置方法。
Input
共有若干行,每行一个正整数N≤10,表示棋盘和皇后的数量;如果N=0,表示结束。
Output
共有若干行,每行一个正整数,表示对应输入行的皇后的不同放置数量。
Sample Input
1 8 5 0
Sample Output
1 92 10
Author
cgf
#include <stdio.h>
int main() {
int n;
while(scanf("%d", &n) != EOF&&n) {
switch(n){
case 1:puts("1");break;
case 2:puts("0");break;
case 3:puts("0");break;
case 4:puts("2");break;
case 5:puts("10");break;
case 6:puts("4");break;
case 7:puts("40");break;
case 8:puts("92");break;
case 9:puts("352");break;
case 10:puts("724");break;
}
}
return 0;
}
这是作弊……!数组的DFS是会超时的,事先打个表就可以0ms:
#include <cstdio>
bool vis[3][25];
int n, tot, que[11];
void dfs(int cur) {
if(cur == n)
tot++;//每次放置到第n个皇后就是递归边界(皇后从0~n-1)
else
for(int i = 0; i < n; i++) {//枚举列,递归行
if(!vis[0][i] && !vis[1][cur+i] && !vis[2][cur-i+n]) {
vis[0][i] = vis[1][cur+i] = vis[2][cur-i+n] = true;//cur+i -> 副对角线; cur-i+n -> 主对角线
dfs(cur+1);
vis[0][i] = vis[1][cur+i] = vis[2][cur-i+n] = false;
}//数学知识:主对角线上的位置,b = 行 - 列 + n; 副对角线上的位置,b = 行 + 列————b是常数
}
}
int main() {
for(int i = 1; i <= 10; i++) {
tot = 0;
n = i;
dfs(0);
que[i] = tot;
}
while(~scanf("%d", &n), n) {
printf("%d\n", que[n]);
}
return 0;
}
都不满意?下面才是重点
#include<cstdio>
#include<cstring>
int n, LIM, tot, que[11];
//pos:可放置的位置表示为1; row:行、ld:左下点、rd:右下点 不可放置的位置表示为1
void dfs(int row,int ld,int rd) {//递归行,位运算列
if(row == LIM) {//每行都有一个皇后,得到一个可行解
tot++;
return ;
}
int pos = (~(row|ld|rd)) & LIM;//(row|ld|rd)取反之后再按位与,消去前面的无效位得到棋盘上该行可放的位置:用1表示
while(pos) {//自右向左枚举列
int p = pos & (~pos + 1);//依次取最右边的1,也可以改写成 pos & -pos
//若最后一位原本可行,对pos取反再加1之后,仍得到最后一位,若不可行,加1之后会一直进位,直到原本可行那一位
dfs(row|p, (ld|p)<<1, (rd|p)>>1);
pos -= p;//完成本层dfs之后消去所选取的位置p
}
}
int main(){
for(int i = 1; i <= 10; i++) {
LIM = (1<<i) - 1;//二进制下就是i个1
tot = 0;
dfs(0, 0, 0);
que[i] = tot;
}
while(~scanf("%d", &n), n) {
printf("%d\n", que[n]);
}
return 0;
}