哈夫曼树

满足如下图的形式属于哈夫曼树。
在这里插入图片描述
树的带权路径长度为:各个父结点与根节点之和,也就是除去叶子结点的和。

实际等于:树的所有叶子结点从根节点到该叶子结点的路径长度与该叶子结点的权(结点数值)的乘积。

WPL =    30     +       60       +         100         = 190
WPL = (10 + 20) + (10 + 20 + 30) + (10 + 20 + 30 + 40) = 190
WPL = 10 * 3 + 20 * 3 + 30 * 2 + 40 * 1 = 190

由此可见,深度越深的叶子节点的值越小,WPL的值才会越小。


实现代码

#include<iostream>
#include<queue>
using namespace std;

int main()
{
	int n; cin >> n;
	priority_queue<int, vector<int>, greater<int>> heap;

	for (int i = 0; i < n; i++)
	{
		int a; cin >> a;
		heap.push(a);
	}
	int res = 0;
	while (heap.size() != 1)
	{
		int a = heap.top(); heap.pop();
		int b = heap.top(); heap.pop();
		res += a + b;
		heap.push(a + b);
	}

	cout << res << endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值