满足如下图的形式属于哈夫曼树。
树的带权路径长度为:各个父结点与根节点之和,也就是除去叶子结点的和。
实际等于:树的所有叶子结点从根节点到该叶子结点的路径长度与该叶子结点的权(结点数值)的乘积。
WPL = 30 + 60 + 100 = 190
WPL = (10 + 20) + (10 + 20 + 30) + (10 + 20 + 30 + 40) = 190
WPL = 10 * 3 + 20 * 3 + 30 * 2 + 40 * 1 = 190
由此可见,深度越深的叶子节点的值越小,WPL的值才会越小。
实现代码
#include<iostream>
#include<queue>
using namespace std;
int main()
{
int n; cin >> n;
priority_queue<int, vector<int>, greater<int>> heap;
for (int i = 0; i < n; i++)
{
int a; cin >> a;
heap.push(a);
}
int res = 0;
while (heap.size() != 1)
{
int a = heap.top(); heap.pop();
int b = heap.top(); heap.pop();
res += a + b;
heap.push(a + b);
}
cout << res << endl;
}