(一)题目描述
给你一个字符串 s,找到 s 中最长的回文子串。
(二)思路
1)暴力解法:
利用二重循环,对该字符串的每个子序列进行判断。
//直接利用二重循环,遍历每一个子串,并判断其是否为回文串
class Solution03{
public String longestPalindrome(String s) {
int len=s.length();
if(len<2){
return s;
}
int manLen=1;
int begin=0;
for (int i = 0; i < len-1; i++) {
for (int j = i+1; j < len; j++) {
if(i<j&&hwStr(s,i,j)){
if(j-i+1>manLen){
begin=i;
manLen=j-i+1;
}
}
}
}
return s.substring(begin,begin+manLen);
}
//判断是否为回文串的函数
public boolean hwStr(String s,int begin,int end){
char[] array=s.toCharArray();
while (begin<end){
if(array[begin]!=array[end]){
return false;
}
begin++;
end--;
}
return true;
}
}
2)动态规划
1、定义数组元素dp[i][j]:i、j之间的字符串是否为回文串(dp[i][j]=true或false)
2、找出数组元素间的关系式:dp[i][j]=dp[i+1][j-1](看中间的字符串是否为回文串)
3、初始值:i=j时,dp[i][j]=true
class Solution {
public String longestPalindrome(String s) {
/**
* (1)状态的定义
* (2)状态转移方程
* (3)初始状态或边界条件的定义
*/
char[] chars = s.toCharArray();
int len = s.length();
//状态的定义,是一个二维数组;(1:i,j之间的串为回文串)
int[][] dp = new int[len][len];
//记录回文串最大长度
int maxLen = 1;
//记录最大回文子串起始位置
int begin = 0;
for (int i = 0; i < len; i++) {
dp[i][i] = 1;
}
//以下内容需要画图理解
for (int j = 1; j < len; j++) {
for (int i = 0; i < j; i++) {
//i,j之间的串不是回文串
if (chars[i] != chars[j]) {
dp[i][j] = 0;
} else {
//i、j相等:里面的串有可能是回文串
if (j - i < 3) {
dp[i][j] = 1;
} else {
dp[i][j] = dp[i + 1][j - 1];
}
}
if (dp[i][j] == 1 && j - i + 1 > maxLen) {
maxLen = j - i + 1;
begin = i;
}
}
}
return s.substring(begin, begin + maxLen);
}
}
附上解析链接:力扣
(3)中心扩展算法
找"回文中心",然后从回文中心开始向其两边发散,进而找到最长回文子串
回文中心:长度为1或2的串(i,i)和(i,i+1)作为回文子串(因从这两种扩散可以得到所有回文子串可能的情况)