买卖股票的最佳时机-LeetCode121

这篇博客介绍了一个使用动态规划解决股票交易最大利润的经典问题。通过维护一个动态数组dp,记录到第i天为止的最低股票价格,然后在遍历过程中计算最大利润。代码实现中展示了如何避免两重循环的暴力解法,提高算法效率。
摘要由CSDN通过智能技术生成

一、题目描述

给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。

你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。

返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。

输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
     注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。

二、解题思路

(1)错误解法:用暴力解法,使用两重循环,第一重循环遍历数组每个元素,第二重循环找当前元素及其之间所有元素中最小的元素,计算两值之差求得当前最大利润。

注:这种解法会超时,但力扣官方题解中有该解法(不推荐)

(2)利用动态规划

        1)状态变量:dp[i]:第i个元素及其之前的所有元素中的最小值

        2)状态转移方程:dp[i]=min(dp[i-1],price[i]):第i个元素及其之前区间的最小值与第i-1个元素及其之前的区间的最小值有关。

三、代码实现

public int maxProfit(int[] prices) {
        //动态规划
        //  dp[i]:记录第i天及之前的最低价格
        int[] dp = new int[prices.length];
        dp[0] = prices[0];
        int maxProf = 0;
        for (int i = 1; i < prices.length; i++) {
            //状态转移方程:第i天之前的最低价格与第i-1天之前的最低价格有关
            dp[i] = Math.min(dp[i - 1], prices[i]);
            maxProf=Math.max(prices[i]-dp[i],maxProf);
        }
        return maxProf;
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值