傅里叶分析概述

目录

1概述

2周期信号的频谱

2.1周期信号

2.2复数

2.3欧拉公式

2.4傅里叶级数

2.5幅值频谱

2.6相位频谱

2.7双边频谱

小结

3非周期信号的频谱

3.1非周期信号

3.2傅里叶变换

3.3频谱图

小结

4常用性质

4.1频移性

4.2卷积定理

5单位脉冲信号

特性

6周期函数的傅里叶变换

7周期单位脉冲信号

8采样与复原

8.1采样

8.2采样定理

8.3混频

8.4复原

8.5泄漏

9离散傅里叶变换(DFT)

10二维傅里叶变换

10.1性质

10.2频谱与相角

频谱

相角

10.3二维离散卷积定理

10.4 DFT的卷积混叠

结语

参考文章


1概述

        法国数学家 Jean Baptiste Joseph Fourier(吉恩.巴普提斯.约瑟夫.傅里叶)在1807年发表的传记和1822年出版的《热分析理论》一书中指出:无论函数多么复杂,只要它是周期的,并且满足某些适度的条件,都可以表示为不同频率的正弦和(或)余弦函数之的形式,每个正弦和(或)余弦函数都乘以不同的系数(现称之为傅里叶级数)。

        如图1所示,多个正余弦信号叠加,即可得到方波信号,而通过傅里叶级数即可逆向将方波信号分解为多个正余弦信号之和。

方波信号
图1 方波信号

        甚至是非周期函数(曲线下的面积有限)也可以用正弦和(或)余弦函数乘以加权函数的积分来表示(傅里叶变换)。用傅里叶级数或变换表示的函数特征完全可以通过傅里叶反变换来重建,且不会丢失任何信息。

2周期信号的频谱

2.1周期信号

                                            periodic\ signal \left\{\begin{matrix} sines\ and\ cosines\ signal \\ \\ complex\ periodic\ signal \end{matrix}\right.

        周期信号是按一定时间间隔周而复始,无始无终的信号,其数学表达式为:

                                          x(t)=x(t+nT)\ \ \ \ \ \ \ \ \ \ \ \ (n=\pm 1,\pm 2\ ...)  

式中,T 表示周期。

        周期信号可进一步分为简单周期信号,即正余弦信号(也称为简谐信号或谐波),和复杂周期信号,如方波。两者最大的不同在于频率结构上分别为单频和多频。

        如图2.1.1即为一个f=400MHz的正弦波,其表示为做圆周运动的点在直线上的投影。

f=400MHz的正弦波
图2.1.1 f=400MHz的正弦波

        常见的周期信号是正余弦信号,两者可以相互转化。其中正弦信号的数学表达式为:x(t)=Asin(\omega _0t+\theta )

正余弦信号
图2.1.2 正余弦信号

        由于正余弦信号只含有一个频率成分 {\color{Red} \omega _0} ,从这点看,上式不仅是其时域描述也是其频域描述,无需进行变换,可时域与频域是合二为一的,因此适合将其做为合成其他任意信号的基本信号。而对于复杂周期信号,由于其是多频结构,无法直接观察其频率构成,故需要先将其转换为多个不同频率的正余弦信号之和,而这个工具就是“傅里叶级数”。

【注】:信号不仅能分解为正余弦信号,也可以分解为其他信号,如幂级数展开、泰勒展开,但在工程应用中为了简化问题的需要,故将其分解为正余弦信号。

2.2复数

        复数C的定义如下:

                                                                        C=R+jI

        其中,R 和 I 皆为实数,分别表示复数C的实部(Real part)和虚部(Imaginary part),而 j 则表示等于 -1 平方根的虚数,即 j=\sqrt{-1},复数C的共轭复数 \bar{C} 表示为

                                                                         \bar{C}=R-jI   

        从几何角度来看,复数可视为复平面上的一个点,横坐标为实轴(R的值),纵坐标为虚轴(I 的值),即点 (R,I)。同时,在极坐标下,复数C可表示为:

                                                                          C=\left | C \right |(cos\theta + jsin\theta)

        同时,由欧拉公式可得:

                                                                          C=\left | C \right |e^{j\theta}

        其中 \left | C \right |=\sqrt{R^2+I^2}是复平面的原点到点 (R,I) 的向量的长度,\theta=arctan(\frac{I}{R}) 是该向量与实轴的夹角,以图2.2.1和图2.2.2为例,分别表示 \left | C \right |=1 时和 \left | C \right |=a 时复数 C 在复平面上的点。

|C|=1时,复平面表示
图2.2.1 |C|=1时,复平面表示
|C|=a时,复平面上的点
图2.2.2 |C|=a时,复平面上的点

 

注意:计算 \theta时,因为 arctan函数 的值域为 [-\frac{\pi}{2},\frac{\pi}{2}],且 R 和 I 可独立地为正或负,因此需要追踪 R 和 I 的符号来进行计算,得到全域 [-\pi},\pi] 的解,如在python中,可通过调用函数:atan2(Imag, Real) 来实现。例如,复数 1+1j 得极坐标是 \sqrt{2}e^{j\theta},其中 \theta=45^{\circ}

import math

c1 = 1 + 1j                                     # 定义复数 1+1j
c2 = c1.conjugate(c1)                         # 得到复数c1的共轭复数 1-1j
c3 = -c1                                      # 得到复数c1的相反数  -1-1j
math.degrees(math.atan2(c1.imag, c1.real))    # atan2函数的返回值为弧度,转为角度后为45.0度
math.degrees(math.atan2(c3.imag, c3.real))    # -135.0

        以上公式还可应用于复函数,如变量 u 的复函数 F(u) 可以表示为 F(u)=R(u)+jI(u),共轭复函数 F^*(u)=R(u)-jI(u),幅值 \left | F(u) \right |=\sqrt{R(u)^2+I(u)^2} ,角度 \theta=arctan[\frac{I(u)}{R(u)}]

2.3欧拉公式

                                                 e^{\pm j\omega t}=cos(\omega t) \pm jsin(\omega t)

                                                 cos(\omega t)=\frac{1}{2}(e^{-j\omega t}+e^{j\omega t})

                                                 \sin(\omega t)=\frac{1}{2}j(e^{-j\omega t}-e^{j\omega t})=\frac{1}{2j}(e^{j\omega t}-e^{-j\omega t})

        欧拉公式所描绘的,是一个随着时间变化,在复平面上做圆周运动的点,随着时间的改变,在时间轴上就成了一条螺旋线。如果只看它的实数部分,也就是螺旋线在左侧的投影,就是一个最基础的余弦函数。而右侧的投影则是一个正弦函数。如图2.3所示。

欧拉公式
图2.3 欧拉公式

【推导】(准确说是验证):

        先对如下三个函数进行幂级数展开:

                  e^x=1+x+\frac{x^2}{2!}+...+\frac{x^n}{n!}+... \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n=0,1,...

                 cosx=1-x+\frac{x^2}{2!}+...+\frac{(-1)^nx^{2n}}{(2n)!}+... \ \ \ \ \ \ \ \ n=1,2,...

                 sinx=x-\frac{x^3}{3!}+...+\frac{(-1)^{n-1}x^{2n-1}}{(2n-1)!}+... \ \ \ \ \ \ \ \ n=1,2,...

        将 x=j\theta 带入上式可得:

                   e^{j\theta}=1+(j\theta)+\frac{(j\theta)^2}{2!}+\frac{(j\theta)^3}{3!}+\frac{(j\theta)^4}{4!}+\frac{(j\theta)^5}{5!}+... \ \ \ \ \ \ \ \ \ n=0,1,... \\ =1+j\theta-\frac{\theta^2}{2!}-\frac{j\theta^3}{3!}+\frac{\theta^4}{4!}+\frac{j\theta^5}{5!}+... \\=(1-\frac{\theta^2}{2!}+\frac{\theta^4}{4!}-...)+j(\theta-\frac{\theta^3}{3!}+\frac{\theta^5}{5!}-...)

                   =cos\theta+jsin\theta

        即可推广至出欧拉公式的一般形式

2.4傅里叶级数

        一个周期为T的信号,如果满足狄里赫利条件,即在一个周期内:

  1. 处处连续或存在有限个间断点
  2. 有限个极值点
  3. 绝对可积

则此信号 x(t) 可以展开为傅里叶级数,其有三个等价公式:

       {\color{Red} x(t)=a_0 + \sum_{n=1}^{\infty }[a_ncos(n\omega _0t)+b_nsin(n\omega _0t)]\ \ \ \ \ n=1,2, ...}                          (1-1)

       x(t)=a_0+\sum_{n=1}^{\infty }A_ncos(n\omega _0t+\theta )\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n=\pm 1,\pm 2, ...                    (1-2)

       x(t)=\sum_{n=-\infty}^{\infty }C_ne^{jn\omega _0t}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n=\pm 1,\pm 2, ...                    (1-3)

式(1-1) 主要用于数学展开,其中:\omega_0=\frac{2\pi }{T}a_0=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}x(t)dta_n=\frac{2}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}x(t)cos(n\omega _0t)dtb_n=\frac{2}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}x(t)sin(n\omega _0t)dt

式(1-2)主要用于作频谱图,由式(1-1)中的正、余弦项合并而成,其中:A_n=\sqrt{a_n^2+b_n^2}\theta _n=-arctan(\frac{b_n}{a_n})

式(1-3)主要用于数学推导,由式(1-1)结合欧拉公式得到,其中:C_n=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}x(t)e^{-jn\omega _0t}dt=\frac{1}{2}(a_n-jb_n)

        a_0 是一个常数,不随时间变化的静态量(或称直流分量)。当 n=1 时,所对应的正、余弦项称为基波,频率 \omega_0 称为基频,其次依次为二次谐波(n=2,频率为 2\omega_0),三次谐波,...,n次谐波(频率为 n\omega_0),也就是说:频域轴的基本单位就是 {\color{Red} \omega_0}

【注意】:在作幅值频谱图和相位频谱图时,式(1-2)和(1-3)皆以 n\omega_0 为横坐标,不过在幅值频谱图中,式(1-2)中以 A_n 为纵坐标,式(1-3)则以 \left | C_n \right | 为纵坐标。在相位频谱图中,式(1-2)以 \theta_n 为纵坐标 。

        如图2.4.1所示,橙色圆表示 \frac{4}{\pi}sin\theta的正弦波形,绿色圆表示 \frac{4}{3\pi}sin(3\theta)的正弦波,蓝色圆表示 \frac{4}{5\pi}sin(5\theta)的正弦波形,红色圆表示 \frac{4}{7\pi}sin(7\theta)的正弦波形。将橙色圆与绿色圆相叠加,即 \frac{4}{\pi}sin\theta+\frac{4}{3\pi}sin(3\theta) ,即可组成右侧的绿色的波形,将这四个正弦波全部叠加,即 \frac{4}{\pi}sin\theta+\frac{4}{3\pi}sin(3\theta)+\frac{4}{5\pi}sin(5\theta)+\frac{4}{7\pi}sin(7\theta),即可组成右下角的红色波形,已越来越接近方波了,其实依此规律继续叠加,最终将得到周期方波的图像。

不同正弦分量的叠加
图2.4.1 不同正弦分量的叠加

        如图2.4.2所示,最前面(左边)的黑色的近似矩形的线,就是后面各种颜色波形的叠加状态,而后面依不同颜色排列而成的正弦波就是组合为矩形波的各个分量。这些正弦波按照频率从低到高从前向后排列开来,不同颜色则代表着不同振幅、频率及相位的不同波形。当然,上图每两个正弦波之间都还有一条直线,这代表着振幅为 0 的正弦波,也就是说,为了组成特殊的曲线,有些正弦波成分是不需要的。

傅里叶级数1
图2.4.2 傅里叶级数

注意:振幅为0的正弦波不一定存在,根据实际波形而定,如周期方波的仅包含奇数次正弦波,偶数次正弦波和余弦波皆为0。

注意:静态量a_0 可以理解为频率为0时的波,其是一个常数,在图中也就是一条直线,所以也称为直流分量,其仅仅影响全部波形相对于数轴整体向上或是向下但不改变波的形状

        定量地看,式(1-2)中的两个随整数 n 变化的函数序列 A_n 和 \theta_n分别代表各次谐波分量的幅值和初相角,当谐波频率 n\omega_0 作离散变化时,A_n 和 \theta_n 都有确定的值与之相对应,这两个对应关系分别称为 “幅值频谱” 和 “相位频谱”,共同来反应周期信号的频率结构。

2.5幅值频谱

        以下图为例,幅值频谱即为从该图像的侧面看过去,不同颜色的正弦波所投影到侧边平面上的图像。其中波形的频率即对应幅值频谱的横轴,波形的幅值对应了幅值频谱图的纵轴。

空间表述
图2.5.1 空间表述

        投影后的幅值频谱图如下图所示:

幅值频谱
图2.5.2 幅值频谱

2.6相位频谱

        幅值频谱投影到了侧面,而相位谱即为波形在下方的投影,但此处为间接投影

相位频谱
图2.6.1 相位频谱

        如下图所示,对于正弦分量来说,小红点一个周期内导数>0的曲线与横坐标的交点)与纵坐标的距离即为正弦信号所移动的时间差,记为 \Delta t,而 \frac{\Delta t}{T}*2\pi即为相位。故波形在下侧的投影并不能直接表示为相位频谱,还需要对其时间差进行转换,得到相位值,进而得到相位频谱。同理,对于余弦分量来说,小红点一个周期内距离频率轴最近的波峰)在横坐标上的投影点用橘黄色点表示,其与纵坐标的距离即为余弦分量所移动的时间差,进而再转换为相位。

正余弦函数
图2.6.2 正余弦函数

2.7双边频谱

        除了根据式(1-2)来描绘频谱图外,还可以使用式复数指数函数(1-3)来进行描述。但根据欧拉公式,三角式中的的一项对应到指数式中就变为了两项,多了一个频率为 -n\omega_0 的分量,但同时因为 \left | C_n \right |=\frac{1}{2}\sqrt{a_n^2+b_n^2}=\frac{1}{2}A_n,故幅度值也会减为原来的一半。即图像变为了以纵轴对称的形式。以某一正弦分量为例:

                                              Asin(n\omega_0t)=j\frac{A}{2}(e^{-jn\omega_0t}-e^{jn\omega_0t})

        对上式作频谱图,如图2.7.1所示,左边按三角式 Asin(n\omega_0t) 所作的称为单变频谱,右边按指数式 j\frac{A}{2}(e^{-jn\omega_0t}-e^{jn\omega_0t}) 所作的称为双边频谱

单变与双边频谱
图2.7.1 单变与双边频谱

【注意】:两个频谱在理论上是等效的,只不过双边频谱中的 “负频率” 在实际工程中并不存在,近视数学处理的结果。

【实例】:如图2.7.2所示,求周期方波的傅里叶级数及其频谱图

                                     x(t)=\left\{\begin{matrix} 1, \ \ 0\leq t\leq \frac{T}{2}& \\ -1, \ \ -\frac{T}{2}\leq t \leq 0& \end{matrix}\right.   

周期方波信号
图2.7.2 周期方波信号

解:(1) 一个周期内,波形在横轴上下所围成的面积相等,故 a_0=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}x(t)dt=0

(2) x(t) 是奇函数,cosn\omega_0t是偶函数,所以 x(t)cosn\omega_0t 为奇函数(奇函数在一个对称区间内的积分值为零),因此

                                                                 a_n=\frac{2}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}x(t)cos(n\omega_0t)dt=0

(3) 故此周期方波信号仅有正弦分量构成,其各次正弦波的幅值:

           b_n=\frac{2}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}x(t)sin(n\omega_0t)dt=\frac{2}{T}\int_{-\frac{T}{2}}^0\ -1\ sin(n\omega_0t)dt+\frac{2}{T}\int_{0}^{\frac{T}{2}}\ 1\ sin(n\omega_0t)dt

                =\frac{2}{n\pi}[-cos(n\pi)+1]=\frac{2}{n\pi}[-(-1)^n+1]=\left\{\begin{matrix} 0, \ \ \ n=2,4,...& \\ \frac{4}{n\pi}, \ \ n=1,3,...& \end{matrix}\right.

(4) 故最终此周期方波信号的傅里叶级数如下,不含静态分量,仅含奇次谐波

          x(t)=a_0 + \sum_{n=1}^{\infty }[a_ncos(n\omega _0t)+b_nsin(n\omega _0t)]\ \ \ \ \ n=1,2, ...

                       ={\color{Red} \frac{4}{\pi}(sin(\omega_0t)+\frac{1}{3}sin(3\omega_0t)+\frac{1}{5}sin(5\omega_0t)+...)}

(5) 其幅值和相角分别为:           {\color{Red} A_n=\sqrt{a_n^2+b_n^2}=\left | b_n \right |=\frac{4}{n\pi}}

                                                     {\color{Red} \varphi_n=-arctan\frac{b_n}{a_n}=-90^{\circ}}

作其频谱图如图2.7.3所示:

周期方波信号的幅值和相角
图2.7.3 周期方波信号的幅值和相角

小结

  1. 周期信号所含的各分量的频率是离散的。
  2. 各次谐波的频率关系具有谐波性,即各次谐波的频率都是基频 \omega_0 的整数倍或之比都是有理数(各分量的频率有公倍数),相邻频率间隔为 \omega_0 或其整数倍。
  3. 复杂周期信号的幅值频谱是收敛的,即谐波的频率越高,其幅值越小,在整个信号中所占的比重也就越小。

3非周期信号的频谱

3.1非周期信号

                                                      

  • 40
    点赞
  • 161
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值