寻找和为Sum的多个数-2

1. 题意

前一篇文章中,我们可以明显发现,其要求是一个连续的N中选取K个数使其和为Sum,这里我们可以对其举一反三,也即在一个给定的数组Arr中(注意这里不要求数组中数据是连续的),任意的从中选取K个数,使得这个k个数的和为Sum 并且输出所有的组合数。

2. 解法

核心思想: 仍然是将n问题转换为n-1问题

对于这样Arr[1..N] 的N个数,我们可以考虑是否选择第N个数Arr[N-1]来解决,问题就可以转换成N-1个数的问题,也就是说:

1)如果我们取了第N个数Arr[N-1],那么问题就变成了”在Arr[1..N-1]这个N-1个数中,选取K个数,使得其和为Sum-N”

2)如果我们不取第N个数Arr[N-1],那么问题就变成了”在Arr[1..N-1]这个N-1个数中,选取K个数,使得其和为Sum”

对于以上分析,我们定义一个函数SumOfKValue2, 其实现如下:

 /**
 * Created by ChaoNi on 2016/9/23.
 */
import java.util.*;

public class Main {

    //记录选取的数字
    private static LinkedList<Integer> arrayList = new LinkedList<>();


    public static void main(String[] args) {

       int[] arr=new int[]{1,2,3,4,5,6,7,8,9,10};
       SumOfKValue2(10,arr,arr.length-1);

    }


    public static void SumOfKValue2(int sum, int[] arr, int index) {
        if (index < 0 || sum == 0) return;
        //输出找到的结果
        if (sum == arr[index]) {
            //反转list
            Collections.reverse(arrayList);
            for(int t:arrayList){
                System.out.print(t+" ");
            }
            System.out.print(arr[index]+"\r\n");
            count++;
            Collections.reverse(arrayList);
        }

        arrayList.add(0, arr[index]);
        SumOfNumber(sum - arr[index], arr, index - 1);
        arrayList.remove(0);
        SumOfNumber(sum, arr, index - 1);
    }



}

3. 结果

上面的程序测试用例中Arr[1..10]为{1,2,3,4,5,6,7,8,9,10},Sum=10,将得到如下的输入结果
10
9 1
8 2
7 3
7 2 1
6 4
6 3 1
5 4 1
5 3 2
4 3 2 1

共有10组!

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/jack_nichao/article/details/52641209
文章标签: 数组
个人分类: DataStruct & Algorithm
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭