HDU - 2196 dfs 树的直径

本文探讨了图的搜索与遍历的区别,指出搜索可能涉及全图扫描,而遍历只需一次扫描。通过分析HDU-2196题目,介绍了树的直径概念及其在算法优化中的应用,提出利用树的直径特性可以避免暴力搜索,仅需三次深度优先搜索即可求解。
摘要由CSDN通过智能技术生成

今天一个师哥讲了图的进阶,感觉师哥讲的很好,有很多启发性的问题。
其中一个问题是图的搜索和图的遍历有什么区别?
最大的区别就是遍历只需要扫描一遍图。
而每一次搜索可能都需要搜索全图的时间复杂度。
所以如果拿没有优化的搜索去暴力的话,每一次搜索都需要遍历一遍图。这样有很大的可能性是会T的。

接下来讲讲 HDU - 2196 这道题,这道题如果直接暴力搜索,以每个点作为根节点的话,很有可能会T,所以需要用到树的直径的性质。
树的直径的定义:树中所有最短路径的最大值。
所以树上任意一点对应的距离最远端点一定是 树的直径的某个端点。

所以这题只需要三遍dfs就可以做出来了。
第一遍找出树的一个直径端点a。
第二遍计算其余所有点到a的距离,并找出树的直径的另一个端点b。
第三遍计算其余所有点到端点b的距离。

树上任意一点对应的距离的最大值一定是到某一个端点的距离。

#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
#define maxn 10005
struct edge
{
    int to;
    int next;
    int w;

}edge[maxn*2];
int head[maxn*2];
int n;
int rt;
int drt[maxn];
int d1[maxn];
int d2[maxn];
int total;

void add(int u,int v,int l)
{
    edge[total].to = v;
    edge[total].w = l;
    edge[total].next = head[u];
    head[u] = total;

    total++;

    edge[total].to = u;
    edge[total].w = l;
    edge[total].next = head[v];
    head[v] = total;
    total++;

}

void dfs(int u,int fa,int d[])  //从u点遍历到根节点 并将结果存储在数组中
{
     for(int i= head[u];i!=-1;i= edge[i].next)
     {
         int v = edge[i].to;
         if(v!=fa)
         {
             d[v] = d[u]+edge[i].w;
             if(d[rt]<d[v])rt = v;
             dfs(v,u,d);
         }
     }
}



int main()
{
    int x,y;
    while(cin>>n)
    {
        total=0;
        memset(head,-1,sizeof(head));
        for(int i=2;i<=n;i++)
        {
            cin>>x>>y;
            add(i,x,y);
        }

        memset(drt,0,sizeof(drt));
        memset(d1,0,sizeof(d1));
        memset(d2,0,sizeof(d2));

        rt=1;
        dfs(1,-1,drt);
        dfs(rt,-1,d1);
        dfs(rt,-1,d2);

        for(int i=1;i<=n;i++)
        {
            cout<<max(d1[i],d2[i])<<endl;
        }

    }
    return 0;
}

一点注意:
用邻接表存储的图,bfs和dfs的时间复杂度均为 o(v+e) 。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值