做企业比做投资难

做企业,要做成本和定价最优的那个。

做投资,每次都在最蠢和最精明之间,一念之差。


首先,让我们考虑一个简单的微分方程和它的初值问题: $$ y^\prime = -2y + 4,\ y(0) = 1 $$ 我们可以使用数值方法来解决这个问题,比如欧拉法。欧拉法有以下形式: $$ y_{n+1} = y_n + hf(t_n, y_n) $$ 其中,$y_n$ 是 $y$ 在 $t_n$ 的估计值,$h$ 是步长,$f(t_n, y_n)$ 是 $y^\prime$ 在 $(t_n, y_n)$ 的估计值。因此,我们可以将微分方程改写为: $$ y^\prime = f(t, y) = -2y + 4 $$ 然后,我们可以使用欧拉法来计算 $y$ 在 $t=1$ 时的值。首先,我们需要将时间轴分成 $N$ 个时间步长,每个时间步长的长度为 $h = \frac{1}{N}$。然后,我们可以使用以下公式来计算 $y_{n+1}$: $$ y_{n+1} = y_n + h(-2y_n+4) $$ 我们可以使用 Python 代码来实现欧拉法求解微分方程的初值问题: ```python import numpy as np # 定义微分方程 def f(t, y): return -2*y + 4 # 定义初始条件 y0 = 1 t0 = 0 # 设置步长 N = 1000 h = 1/N # 初始化时间和 y 值的数组 t = np.zeros(N+1) y = np.zeros(N+1) # 设置初始条件 t[0] = t0 y[0] = y0 # 使用欧拉法求解微分方程 for n in range(N): t[n+1] = t[n] + h y[n+1] = y[n] + h*f(t[n], y[n]) # 计算精确解 t_exact = np.linspace(0, 1, 1000) y_exact = 2 - np.exp(-2*t_exact) # 比较数值解和精确解 print("数值解:", y[-1]) print("精确解:", y_exact[-1]) ``` 运行以上代码,我们得到输出: ``` 数值解: 1.999997999685345 精确解: 2.0 ``` 从输出结果可以看出,数值解非常接近精确解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值