算法--高数Umaru系列(9)——哈士奇

Problem Description

由于高数巨养的喵星人太傲娇了,要天天吃新鲜猫粮而且还经常欺负高数巨,所以高数巨决定买几条哈士奇尝尝鲜。这天高数巨来到了二手狗市场买哈士奇,高数巨看完了所有的哈士奇,记下了每条哈士奇的价格,并根据对它们的好感程度给它们每只都赋予了一个萌值。高数现在手里有X元,她想通过购买若干条哈士奇来获得尽可能多的萌值。现在给定高数巨手里的钱X以及N条哈士奇的价格和萌值,求高数巨最多可获得多少萌值

Input

 多组输入。

对于每组输入,第一行有两个整数N,X(1 < = N < = 100,1 < = X < = 1000),分别表示哈士奇的数量和高数巨的钱数

接下来的N行每行有两个整数Pi,Mi(1 < = Pi,Mi < = 100),分别表示第i条哈士奇的价格和萌值

Output

对于每组数据,输出一个整数,表示高数巨最多可以获得的萌值,每组输出占一行

Sample Input

2 100
50 20
60 40
3 100
20 55
20 35
90 95
1 10
20 50

Sample Output

40
95
0

#include <bits/stdc++.h>

using namespace std;
struct HaDog{
    int p;
    int m;
}dog[100];

int max(int a,int b){
    return a>b?a:b;
}
int main()
{
    int n,x;
    int f[101][1001];
    memset(f,0,sizeof(f));
    while(scanf("%d%d",&n,&x)!=EOF){
        for(int i=1;i<=n;i++){
            scanf("%d%d",&dog[i].p,&dog[i].m);
        }

    for(int i=1;i<=n;i++)
    for(int j=1;j<=x;j++){
        if(j-dog[i].p>=0){
            f[i][j] = max(f[i-1][j],f[i-1][j-dog[i].p]+dog[i].m);
        }
        else{
            f[i][j] = f[i-1][j];
        }
    }

    printf("%d\n",f[n][x]);

    }
    return 0;
}

采用动态规划,f[i][j]表示在前i件物品中选择若干件放在承受能力为j的背包中,可以取得的最大价值。 .

f[i][j] = max(f[i-1][j],f[i-1][j-dog[i].p]+dog[i].m);

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值