Problem Description
由于高数巨养的喵星人太傲娇了,要天天吃新鲜猫粮而且还经常欺负高数巨,所以高数巨决定买几条哈士奇尝尝鲜。这天高数巨来到了二手狗市场买哈士奇,高数巨看完了所有的哈士奇,记下了每条哈士奇的价格,并根据对它们的好感程度给它们每只都赋予了一个萌值。高数现在手里有X元,她想通过购买若干条哈士奇来获得尽可能多的萌值。现在给定高数巨手里的钱X以及N条哈士奇的价格和萌值,求高数巨最多可获得多少萌值
Input
多组输入。
对于每组输入,第一行有两个整数N,X(1 < = N < = 100,1 < = X < = 1000),分别表示哈士奇的数量和高数巨的钱数
接下来的N行每行有两个整数Pi,Mi(1 < = Pi,Mi < = 100),分别表示第i条哈士奇的价格和萌值
Output
对于每组数据,输出一个整数,表示高数巨最多可以获得的萌值,每组输出占一行
Sample Input
2 100
50 20
60 40
3 100
20 55
20 35
90 95
1 10
20 50
Sample Output
40
95
0
#include <bits/stdc++.h>
using namespace std;
struct HaDog{
int p;
int m;
}dog[100];
int max(int a,int b){
return a>b?a:b;
}
int main()
{
int n,x;
int f[101][1001];
memset(f,0,sizeof(f));
while(scanf("%d%d",&n,&x)!=EOF){
for(int i=1;i<=n;i++){
scanf("%d%d",&dog[i].p,&dog[i].m);
}
for(int i=1;i<=n;i++)
for(int j=1;j<=x;j++){
if(j-dog[i].p>=0){
f[i][j] = max(f[i-1][j],f[i-1][j-dog[i].p]+dog[i].m);
}
else{
f[i][j] = f[i-1][j];
}
}
printf("%d\n",f[n][x]);
}
return 0;
}
采用动态规划,f[i][j]表示在前i件物品中选择若干件放在承受能力为j的背包中,可以取得的最大价值。 .
f[i][j] = max(f[i-1][j],f[i-1][j-dog[i].p]+dog[i].m);