linux已经实现了二叉树的查找,增加,删除。
TSEARCH(3) Linux Programmer’s Manual TSEARCH(3)
NAME
tsearch, tfind, tdelete, twalk, tdestroy - manage a binary tree
SYNOPSIS
#include <search.h>
void *tsearch(const void *key, void **rootp,
int (*compar)(const void *, const void *));
void *tfind(const void *key, const void **rootp,
int (*compar)(const void *, const void *));
void *tdelete(const void *key, void **rootp,
int (*compar)(const void *, const void *));
void twalk(const void *root, void (*action)(const void *nodep,
const VISIT which,
const int depth));
#define _GNU_SOURCE
#include <search.h>
void tdestroy(void *root, void (*free_node)(void *nodep));
下面的链接是openBSD里面实现的tsearch源码
http://ftp.usa.openbsd.org/pub/OpenBSD/src/lib/libc/stdlib/tsearch.c
/* $OpenBSD: tsearch.c,v 1.10 2015/09/26 16:03:48 guenther Exp $ */
/*
* Tree search generalized from Knuth (6.2.2) Algorithm T just like
* the AT&T man page says.
*
* The node_t structure is for internal use only
*
* Written by reading the System V Interface Definition, not the code.
*
* Totally public domain.
*/
#include <search.h>
#include <stdlib.h>
typedef struct node_t {
char *key;
struct node_t *left, *right;
} node;
/* find or insert datum into search tree */
void *
tsearch(const void *vkey, void **vrootp,
int (*compar)(const void *, const void *))
{
node *q;
char *key = (char *)vkey;
node **rootp = (node **)vrootp;
if (rootp == (struct node_t **)0)
return ((void *)0);
while (*rootp != (struct node_t *)0) { /* Knuth's T1: */
int r;
if ((r = (*compar)(key, (*rootp)->key)) == 0) /* T2: */
return ((void *)*rootp); /* we found it! */
rootp = (r < 0) ?
&(*rootp)->left : /* T3: follow left branch */
&(*rootp)->right; /* T4: follow right branch */
}
q = malloc(sizeof(node)); /* T5: key not found */
if (q != (struct node_t *)0) { /* make new node */
*rootp = q; /* link new node to old */
q->key = key; /* initialize new node */
q->left = q->right = (struct node_t *)0;
}
return ((void *)q);
}
/* delete node with given key */
void *
tdelete(const void *vkey, void **vrootp,
int (*compar)(const void *, const void *))
{
node **rootp = (node **)vrootp;
char *key = (char *)vkey;
node *p = (node *)1;
node *q;
node *r;
int cmp;
if (rootp == (struct node_t **)0 || *rootp == (struct node_t *)0)
return ((struct node_t *)0);
while ((cmp = (*compar)(key, (*rootp)->key)) != 0) {
p = *rootp;
rootp = (cmp < 0) ?
&(*rootp)->left : /* follow left branch */
&(*rootp)->right; /* follow right branch */
if (*rootp == (struct node_t *)0)
return ((void *)0); /* key not found */
}
r = (*rootp)->right; /* D1: */
if ((q = (*rootp)->left) == (struct node_t *)0) /* Left (struct node_t *)0? */
q = r;
else if (r != (struct node_t *)0) { /* Right link is null? */
if (r->left == (struct node_t *)0) { /* D2: Find successor */
r->left = q;
q = r;
} else { /* D3: Find (struct node_t *)0 link */
for (q = r->left; q->left != (struct node_t *)0; q = r->left)
r = q;
r->left = q->right;
q->left = (*rootp)->left;
q->right = (*rootp)->right;
}
}
free((struct node_t *) *rootp); /* D4: Free node */
*rootp = q; /* link parent to new node */
return(p);
}
/* Walk the nodes of a tree */
static void
trecurse(node *root, void (*action)(const void *, VISIT, int), int level)
{
if (root->left == (struct node_t *)0 && root->right == (struct node_t *)0)
(*action)(root, leaf, level);
else {
(*action)(root, preorder, level);
if (root->left != (struct node_t *)0)
trecurse(root->left, action, level + 1);
(*action)(root, postorder, level);
if (root->right != (struct node_t *)0)
trecurse(root->right, action, level + 1);
(*action)(root, endorder, level);
}
}
/* Walk the nodes of a tree */
void
twalk(const void *vroot, void (*action)(const void *, VISIT, int))
{
node *root = (node *)vroot;
if (root != (node *)0 && action != (void (*)(const void *, VISIT, int))0)
trecurse(root, action, 0);
}
http://ftp.usa.openbsd.org/pub/OpenBSD/src/lib/libc/stdlib/tfind.c
/* $OpenBSD: tfind.c,v 1.7 2015/09/26 16:03:48 guenther Exp $ */
/*
* Tree search generalized from Knuth (6.2.2) Algorithm T just like
* the AT&T man page says.
*
* The node_t structure is for internal use only
*
* Written by reading the System V Interface Definition, not the code.
*
* Totally public domain.
*/
#include <search.h>
typedef struct node_t
{
char *key;
struct node_t *llink, *rlink;
} node;
/* find a node, or return 0 */
void *
tfind(const void *vkey, void * const *vrootp,
int (*compar)(const void *, const void *))
{
char *key = (char *)vkey;
node **rootp = (node **)vrootp;
if (rootp == (struct node_t **)0)
return ((struct node_t *)0);
while (*rootp != (struct node_t *)0) { /* T1: */
int r;
if ((r = (*compar)(key, (*rootp)->key)) == 0) /* T2: */
return (*rootp); /* key found */
rootp = (r < 0) ?
&(*rootp)->llink : /* T3: follow left branch */
&(*rootp)->rlink; /* T4: follow right branch */
}
return (node *)0;
}
哈希表与二叉查找树的优劣势:
1.哈希表在查找,增加,删除方面的时间复杂度都为O(1),而二叉查找树而O(log n),所以哈希表在处理时间上比较有优势
2.BST是比较容易实现,哈希表在选择哈希函数和解决冲突方面处理比较麻烦
3.BST是已经排序好的树,左节点值 < 父节点值< 右节点值