八皇后 问题,是一个古老而著名的问题,是回溯算法的典型例题。该问题是十九世纪著名的数学家高斯 1850年提出:在8X8格的国际象棋 上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。 高斯认为有76种方案。1854年在柏林 的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。
#include <iostream>
using namespace std;
const int N = 8;
int a[N] = {0};
int b[N] = {0};
int c[2*N -1] = {0};
int d[N] = {0};
int e[N] = {0};
bool check_position(int row,int col)
{
if(true == b[col])
{
return true;
}
if((col >= row) && (0 == d[col-row] && 0 == c[col+row]))
{
return false;
}else if ((col < row) && (0 == e[row-col] && 0 == c[col+row]))
{
return false;
}
return true;
}
void Output()
{
int k;
for(k = 0;k < N;k++)
cout << a[k] <<endl;
}
void eight_queen()
{
int i,j,k;
int flag = 0;
for(j = 0;j < N; j++){
for(k = flag;k < N;k++) {
if(!check_position(j,k)){
a[j] = k;
b[k] = true;
c[k+j] = true;
if(k>j)
{
d[k-j] = true;
}
else if(k<j)
{
e[j-k] = true;
}
else
{
d[k-j] = true;
e[j-k] = true;
}
break;
}
}
if(k == N){
if(j < 1)
{
cout << "error" <<endl;
return;
}
flag = a[j-1] + 1;
b[a[j-1]] = false;
c[a[j-1]+j-1] = false;
if(a[j-1] > (j-1))
{
d[a[j-1]-(j-1)] = false;
}
else if(a[j-1] < (j-1))
{
e[(j-1)- a[j-1]] = false;
}else
{
d[a[j-1]-(j-1)] = false;
e[(j-1)- a[j-1]] = false;
}
a[j-1] = false;
j = j - 2;
}
else
{
flag = 0;
}
}
Output();
}
int main(int argc,char *argv[])
{
eight_queen();
return 0;
}
#include <stdio.h>
#include <stdlib.h>
#define MAX 8
/*MAX为棋盘最大坐标*/
int queen[MAX];
/*输出所有皇后的坐标*/
void printqueen()
{
int i;
for(i=0;i<MAX;i++)
{
printf("<%d,%d>,",i,queen[i]);
}
printf("/n");
}
/*检查当前列能否放置皇后*/
int check(int n)
{
int i;
for(i=0;i<n;i++)
{
if(queen[n] == queen[i] || abs(queen[n]-queen[i]) == (n-i))
{
return 0;
}
}
return 1;
}
/*回溯尝试皇后位置,n为横坐标*/
void put(int n)
{
int j;
for(j=0;j<MAX;j++)
{
queen[n] = j;
if(check(n))
{
if(n==MAX-1)
{
/*如果全部摆好,则输出所有皇后的坐标*/
printqueen();
}
else
{
/*否则继续摆放下一个皇后*/
put(n+1);
}
}
}
}
int main(int argc,char**argv)
{
put(0);
return 0;
}