一、RANSAC检测流程
在这里复述下RANSAC的检测流程,详细的过程见上一篇翻译文章:
RANSAC算法的输入是一组观测数据,一个可以解释或者适应于观测数据的参数化模型,一些可信的参数。
RANSAC通过反复选择数据中的一组随机子集来达成目标。被选取的子集被假设为局内点,并用下述方法进行验证:
1.有一个模型适应于假设的局内点,即所有的未知参数都能从假设的局内点计算得出。
2.用1中得到的模型去测试所有的其它数据,如果某个点适用于估计的模型,认为它也是局内点。
3.如果有足够多的点被归类为假设的局内点,那么估计的模型就足够合理。
4.然后,用所有假设的局内点去重新估计模型,因为它仅仅被初始的假设局内点估计过。
5.最后,通过估计局内点与模型的错误率来评估模型。
这个过程被重复执行固定的次数,每次产生的模型要么因为局内点太少而被舍弃,要么因为比现有的模型更好而被选用。
3.3 检测直线的过程
(1)随机从观测点中选择两个点,得到通过该点的直线;
(2)用(1)中的直线去测试其他观测点,由点到直线的距离确定观测点是否为局内点或者局外点;
(3)如果局内点足够多,并且局内点多于原有“最佳”直线的局内点,那么将这次迭代的直线设为“最佳”直线;
(4)重复(1)~(3)步直到找到最佳直线
3.3 检测圆的过程
(1)随机从观测点中选择三个点,尝试得到通过这三个点的圆;
(2)用(1)中的圆去测试其他观测点,由点到圆的距离确定观测点是否为局内点或者局外点;
(3)如果局内点足够多,并且局内点多于原有“最佳”圆的局内点,那么将这次迭代的圆设为“最佳”圆;
(4)重复(1)~(3)步直到找到最佳圆
取自:http://www.cnblogs.com/xrwang/p/SampleOfRansac.html