RANSAC算法

一、RANSAC检测流程

    在这里复述下RANSAC的检测流程,详细的过程见上一篇翻译文章:

    RANSAC算法的输入是一组观测数据,一个可以解释或者适应于观测数据的参数化模型,一些可信的参数。

    RANSAC通过反复选择数据中的一组随机子集来达成目标。被选取的子集被假设为局内点,并用下述方法进行验证:
    1.有一个模型适应于假设的局内点,即所有的未知参数都能从假设的局内点计算得出。
    2.用1中得到的模型去测试所有的其它数据,如果某个点适用于估计的模型,认为它也是局内点。
    3.如果有足够多的点被归类为假设的局内点,那么估计的模型就足够合理。
    4.然后,用所有假设的局内点去重新估计模型,因为它仅仅被初始的假设局内点估计过。
    5.最后,通过估计局内点与模型的错误率来评估模型。
    这个过程被重复执行固定的次数,每次产生的模型要么因为局内点太少而被舍弃,要么因为比现有的模型更好而被选用。

 3.3 检测直线的过程

    (1)随机从观测点中选择两个点,得到通过该点的直线;

    (2)用(1)中的直线去测试其他观测点,由点到直线的距离确定观测点是否为局内点或者局外点;

    (3)如果局内点足够多,并且局内点多于原有“最佳”直线的局内点,那么将这次迭代的直线设为“最佳”直线;

    (4)重复(1)~(3)步直到找到最佳直线

 3.3 检测圆的过程

    (1)随机从观测点中选择三个点,尝试得到通过这三个点的圆;

    (2)用(1)中的圆去测试其他观测点,由点到圆的距离确定观测点是否为局内点或者局外点;

    (3)如果局内点足够多,并且局内点多于原有“最佳”圆的局内点,那么将这次迭代的圆设为“最佳”圆;

    (4)重复(1)~(3)步直到找到最佳圆

取自:http://www.cnblogs.com/xrwang/p/SampleOfRansac.html

### RANSAC算法概述 RANSAC(Random Sample Consensus,随机采样一致性)算法是一种基于随机采样的迭代算法,主要用于从一组包含大量噪声和异常值(外点)的数据中估计数学模型的参数。该算法由Fischler和Bolles于1981年提出,并在计算机视觉和计算机图形学等领域得到了广泛应用[^2]。 ### RANSAC算法原理 RANSAC的核心思想是从数据集中随机选取最小数量的样本集来构建一个可能的模型假设;然后计算其他数据点与这个假设模型的一致性程度,即内点的数量;重复上述过程多次,最终选择具有最多一致性的模型作为最佳模型。具体来说: - **初始化**:设定最大迭代次数`N`、阈值`t`用于判断内外点的标准。 - **迭代过程**: - 随机抽取最少必要量的数据子集形成初始模型; - 计算剩余所有数据相对于此模型的距离误差; - 将距离小于给定阈值`t`的数据视为内点集合; - 更新当前最好的模型及其对应的内点数。 - **终止条件**:当达到预设的最大迭代次数或找到足够好的模型时结束循环。 ### Python实现示例 下面给出一段简单的Python代码实现了针对二维直线拟合场景下的RANSAC算法: ```python import numpy as np from sklearn.linear_model import LinearRegression def ransac_fit_line(points, n_iterations=100, threshold=1e-2): best_inliers = None max_inliers_count = 0 for _ in range(n_iterations): # Randomly select two points to form a line model sample_indices = np.random.choice(len(points), size=2, replace=False) sampled_points = points[sample_indices] # Fit the linear regression on these samples lr = LinearRegression().fit(sampled_points[:, :-1], sampled_points[:, -1]) # Predict distances of all other points from this fitted line predictions = lr.predict(points[:, :-1]) residuals = abs(predictions - points[:, -1]) # Count how many are within our tolerance level (inliers) current_inliers = points[residuals < threshold] num_current_inliers = len(current_inliers) if num_current_inliers > max_inliers_count: best_inliers = current_inliers.copy() max_inliers_count = num_current_inliers return best_inliers # Example usage with synthetic data containing outliers np.random.seed(42) X = np.linspace(-5, 5, 100).reshape((-1, 1)) y_true = X * 3 + 7 noise = np.random.normal(size=y_true.shape)*2 outlier_mask = np.zeros_like(y_true,dtype=bool) outlier_mask[:10]=True y_noisy = y_true + noise y_outliers = y_noisy.copy() y_outliers[outlier_mask]+=10*(np.random.rand(sum(outlier_mask))-0.5) data_with_outliers=np.hstack([X,y_outliers]) best_fitted_data=ransac_fit_line(data_with_outliers,n_iterations=100,threshold=.5) print('Best Fitted Data Points:\n',best_fitted_data) ``` 这段代码展示了如何利用Scikit-Learn库中的LinearRegression类来进行简单线性回归建模,并通过自定义函数`ransac_fit_line()`实现了基本形式的RANSAC算法逻辑[^1]。 ### 应用领域 除了经典的线性和平面拟合之外,RANSAC还广泛应用于以下几个方面: - 图像拼接中去除误匹配的关键点对,提高图像间变换矩阵估算精度[^4]。 - 在三维重建任务里用来识别并剔除激光扫描仪获取到的离群点云数据。 - 自动驾驶车辆感知模块中处理传感器输入信号中存在的干扰因素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值