- 博客(6)
- 收藏
- 关注
原创 【Datawhale 科研绘图】2.4 SciencePlots
虽然 Matplotlib 或 ProPlot 库能够绘制出插图结果,但。制时间,而且容易导致用户忽略一些图层细节要求。下载超时解决办法:更换为国内源。,这不但会增加论文插图的绘。
2023-08-28 21:11:17 201
原创 【Datawhale 科研绘图】 2.3 ProPlot打卡
ProPlot 库[5]是 Matplotlib 面向对象绘图方法(object-oriented interface)的高级封装整合了 cartopy/Basemap 地图库、xarray 和 pandas,可弥补 Matplotlib 的部分缺陷。
2023-08-27 19:42:09 635 1
原创 Task 4 Wide&Deep
Task 4 Wide&Deep1 点击率预估简介解决什么问题:对每次广告的点击情况做出预测模型:二分类模型,可用逻辑回归作为模型的输出,输出为一个概率值与推荐算法的不同:广告点击率预估:由某个用户对某个广告的点击率 w/ 广告的出价用于排序推荐算法:只需得到一个最优的推荐次序2 FM为什么不好当query-item矩阵是稀疏并且是high-rank的时候,结果较差,会推荐一些不那么相关的物品。简单的linear model可以通过cross-product transformat
2020-10-28 22:04:51 140
原创 零基础入门数据挖掘之模型融合
目录一、模型融合概念(一)分类二、Stacking介绍(一)概念(二)过程三、代码示例(一)回归/分类概率-融合1.简单加权平均,结果直接融合2.Stacking融合(回归)(二)分类模型融合1.Voting投票机制2.分类Stacking/Blending融合四、天池赛实例XGB的五折交叉回归验证实现划分数据集,并用方法训练和预测加权融合Stacking融合一...
2020-04-05 21:28:05 177
原创 Datawhale零基础入门数据挖掘-Task4建模调参
四、建模与调参Tip:此部分为零基础入门数据挖掘的 Task4 建模调参 部分,带你来了解各种模型以及模型的评价和调参策略,欢迎大家后续多多交流。赛题:零基础入门数据挖掘 - 二手车交易价格预测地址:https://tianchi.aliyun.com/competition/entrance/231784/introduction?spm=5176.12281957.1004.1.38b0...
2020-04-02 21:38:35 272
原创 大作业学习总结
数据增强一般而言,神经网络需要大量的参数,许许多多的神经网路的参数都是数以百万计,而使得这些参数可以正确工作则需要大量的数据进行训练,而实际情况中数据并没有我们想象中的那么多作用增加训练的数据量,提高模型的泛化能力增加噪声数据,提升模型的鲁棒性如何获得大量的数据一种方法是获得新的数据,这种方法比较麻烦,需要大量的成本,而第二种方法则是对数据进行增强,即利用已有的数据比如翻转、平移或旋转...
2020-02-28 21:18:18 825
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人