Image Classification
Jadelyw
本人新手一枚,爱好计算机视觉、机器学习、深度学习等,主要想通过CSDN整理一下自己在学习过程中的思路,fighting!!!
展开
-
图像分类实操--分析数据集
分析数据集的好处:能够清楚的认识到自己所以处理的内容是什么,目前存在的问题有哪些,以及采用何种办法来解决。1)将数据集分成训练集和测试集刚开始打算用PIL里面的Image.save来保存图像,但没有成功,所有采用了Opencv来读取图像和保存图像。Code:importosimport randomimport cv2def split_dataset(datapath): # input:...原创 2018-07-01 09:36:46 · 1749 阅读 · 0 评论 -
Look Closer to See Better 阅读笔记
1) 摘要现有的细粒度图像识别的方法忽略了区域检测和细粒度特征学习是相互关联的,并且两者可以相互加强。所以提出了循环注意力卷积神经网络(RA-CNN),该网络以相互增强的方式,在多个尺度上递归地学习判别性的区域注意力和基于区域的特征表示。每个尺度的学习包括一个分类子网络和一个注意力建议子网络(attention proposal sub-network (APN)),APN从完整的图像开始,以...原创 2018-10-08 14:25:48 · 1337 阅读 · 0 评论 -
Pairwise Confusion for Fine-Grained Visual Classification 阅读笔记
1) 摘要尽管细粒度视觉分类数据集的样本数量很少,但是却存在着显著的类内差异性和类别间相似性。然而,先前的工作通常采用定位或者分割来解决类内的差异性,但是,类别间相似性依然影响特征的学习从而降低分类器的性能。针对这一问题,我们提出了一种可端到端惊醒训练的新奇的优化方法--Pairwise Confusion(PC),在激活中故意引入混淆来减少过拟合。通过实验证明PC能够提高定位能力并且在六个细...原创 2018-10-09 20:45:30 · 3824 阅读 · 12 评论 -
ChineseFoodNet: A Large-scale Image Dataset for Chinese Food Recognition 阅读笔记
1) 摘要(1) 提出了一个中国食物的数据集,叫做ChineseFoodNet;(2) 我们努力构建这个大规模的图像数据集,包括食品类别选择,数据收集,数据清洗和标签,特别是如何使用机器学习方法来减少手动标签工作,这是一个昂贵的过程。(3) 我们进一步提出了一种新颖的两步数据融合方法,称为“TastyNet”,它将来自不同CNN的预测结果与投票方法相结合。2) 介绍中国食物难以...原创 2018-10-10 16:03:24 · 6524 阅读 · 15 评论