传送门:http://acm.hdu.edu.cn/showproblem.php?pid=2546
饭卡
Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 31794 Accepted Submission(s): 10964
Problem Description
电子科大本部食堂的饭卡有一种很诡异的设计,即在购买之前判断余额。如果购买一个商品之前,卡上的剩余金额大于或等于5元,就一定可以购买成功(即使购买后卡上余额为负),否则无法购买(即使金额足够)。所以大家都希望尽量使卡上的余额最少。
某天,食堂中有n种菜出售,每种菜可购买一次。已知每种菜的价格以及卡上的余额,问最少可使卡上的余额为多少。
某天,食堂中有n种菜出售,每种菜可购买一次。已知每种菜的价格以及卡上的余额,问最少可使卡上的余额为多少。
Input
多组数据。对于每组数据:
第一行为正整数n,表示菜的数量。n<=1000。
第二行包括n个正整数,表示每种菜的价格。价格不超过50。
第三行包括一个正整数m,表示卡上的余额。m<=1000。
n=0表示数据结束。
第一行为正整数n,表示菜的数量。n<=1000。
第二行包括n个正整数,表示每种菜的价格。价格不超过50。
第三行包括一个正整数m,表示卡上的余额。m<=1000。
n=0表示数据结束。
Output
对于每组输入,输出一行,包含一个整数,表示卡上可能的最小余额。
Sample Input
1 50 5 10 1 2 3 2 1 1 2 3 2 1 50 0
Sample Output
-45 32
Source
Recommend
解题思路:题目中有些需要特殊考虑的。当余额m小于5时,是什么都买不到的,此时只能输出m。因为今天学的背包所以不可能是贪心,哈哈。题目中说当余额>=5 时可以买任意菜品,所以先拿出5元钱 买最贵的菜。然后其他菜品排序之后是一个0 1背包问题。 状态转移方程:dp[ j ] = max (dp[ j ], dp[ j - a[ i ] ] - a[ i ]). dp[ j ]表示买前i件物品,预算为j时的最大花销 以后要学着用一维来写01背包。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int dp[1100],a[1100];
int i,j,n,m;
int main()
{
while(scanf("%d",&n)!=EOF&&n)
{
for(i=1; i<=n; i++)
{
scanf("%d",&a[i]);
}
sort(a+1,a+n+1);
scanf("%d",&m);
if(m<5)
{
printf("%d\n",m);
continue;
}
memset(dp,0,sizeof(dp));//初始化
m=m-5;
for(i=1;i<n;i++)
{
for(j=m;j>=a[i];j--)
{
dp[j]=max(dp[j],dp[j-a[i]]+a[i]);
}
}
printf("%d\n",m-dp[m]-a[n]+5);// +5 并且 m-
}
return 0;
}
/*1
50
5
10
1 2 3 2 1 1 2 3 2 1
50
0
*/