zzuli-2178- GJJ来签到

传送门:https://acm.zzuli.edu.cn/zzuliacm/problem.php?id=2178


2178: GJJ来签到

Time Limit: 1 Sec  Memory Limit: 128 MB
Submit: 589  Solved: 127

SubmitStatusWeb Board

Description

GJJ每天都很忙碌, 他每天要上班, 还要回家烧饭洗衣服。GJJ的公司有个要求, 每天上班需要打卡,忙碌的GJJ有时候会忘记打卡签到了,导致他的缺勤记录里有对应N天未签到的记录。 Gjj可是认识管理部门的妹子琳, 琳给了他M张签到卡,每张都可以消除某一天的未签到记录。将原本未签到的一天变成已经签到的一天。
GJJ现在想要利用这些签到卡使自己连续签到的天数最长, 小伙伴们请帮帮GJJ吧。

Input

第一行是一个正整数 T (T<=100),代表测试数据的组数。
每个测试数据第一行是两个整数N和M(0<=N, M<=100)。第二行包含N个整数a1到aN,表示GJJ没有打卡签到,输入保证a1,a2,a3...aN是严格递增的,并且任意一个ai, 1<=ai<=100。

Output

对于每组数据,输出使用签到卡后,最多能让GJJ连续签到天数变成多少。

Sample Input

28 23 4 19 26 33 53 62 905 227 29 49 50 70

Sample Output

5651

HINT

Source

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
bool cmp(int a,int b)
{
    return a>b;
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        int n,m,a[150],b[150];
        scanf("%d%d",&n,&m);
        memset(a,0,sizeof(a));
        memset(b,0,sizeof(b));
        int j=0;
        for(int i=m; i<n+m; i++)
        {
            scanf("%d",&a[i]);
            b[j++]=a[i]-a[i-m-1]-1;
        }
        b[j++]=100-a[n-1];
        sort(b,b+n+5,cmp);
        printf("%d\n",b[0]);
    }
    return 0;
}



这是一道经典的位运算目,考察对二进制的理解和位运算的熟练程度。 目描述: 给定一个长度为 $n$ 的数组 $a$,初始时每个数的值都为 $0$。现在有 $m$ 个操作,每个操作为一次询问或修改。 对于询问,给出两个整数 $l,r$,求 $a_l \oplus a_{l+1} \oplus \cdots \oplus a_r$ 的值。 对于修改,给出一个整数 $x$,表示将 $a_x$ 的值加 $1$。 输入格式: 第一行两个整数 $n,m$。 接下来 $m$ 行,每行描述一次操作,格式如下: 1 l r:表示询问区间 $[l,r]$ 的异或和。 2 x:表示将 $a_x$ 的值加 $1$。 输出格式: 对于每个询问操作,输出一个整数表示答案,每个答案占一行。 数据范围: $1 \leq n,m \leq 10^5$,$0 \leq a_i \leq 2^{30}$,$1 \leq l \leq r \leq n$,$1 \leq x \leq n$ 输入样例: 5 5 2 1 2 3 1 2 4 2 2 1 1 5 输出样例: 0 2 解思路: 对于询问操作,可以利用异或的性质,即 $a \oplus b \oplus a = b$,将 $a_l \oplus a_{l+1} \oplus \cdots \oplus a_r$ 转化为 $(a_1 \oplus \cdots \oplus a_{l-1}) \oplus (a_1 \oplus \cdots \oplus a_r)$,因为两个前缀异或后的结果可以相互抵消,最后的结果即为 $a_1 \oplus \cdots \oplus a_{l-1} \oplus a_1 \oplus \cdots \oplus a_r = a_l \oplus \cdots \oplus a_r$。 对于修改操作,可以将 $a_x$ 对应的二进制数的每一位都分离出来,然后对应位置进行修改即可。由于只有加 $1$ 操作,所以只需将最后一位加 $1$ 即可,其余位不变。 参考代码:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值