rel="File-List" href="file:///C:%5CDOCUME%7E1%5Cyc%5CLOCALS%7E1%5CTemp%5Cmsohtml1%5C01%5Cclip_filelist.xml">
计算机视觉,英文叫做
Computer Vision
,是最近
30
来年人工智能领域研究的一个方向。在我们国家的教育体系中,往往将其设置为硕士研究生课程,在某些学校的本科教育中也会有所提
到。简单地说,计算机视觉就是让机器具有人所具有的
“
看
”
的能力,然后模拟人的眼睛,做某些分析工作。比如说,人眼有观测红绿灯的能力,于是智能交通研究
领域利用计算机视觉来让计算机具有观察红绿灯的能力,进而判断何时该前行何时该停止。
随着这几十年的发展,计算机视觉逐渐融合了其他领域 的方法来提升本领域的研究。这些其他的领域包括模式识别,机器学习,图像处理等等。然而现在学术领域的计算机视觉研究逐渐偏离了实用化的道路。每年关于计 算机视觉的顶级国际期刊和国际会议(包括 IEEE Trans PAMI,ICCV,CVPR, )里的论文,大多需要加入很多的限制条件才能达到某种实验效果。一般来说,所有的实验结果都无法达到 100% 的结果,即使 是在特定数据集上面的实验。如前举的例子,如果汽车自动驾驶采用计算机视觉技术去观测红绿灯,那么很难想象在任意十字路口的情况,车载计算机的摄像头捕捉 红绿灯之后,是否能够 100% 的做到判断正确。这是关系到人身安全的大事,所以这个应用不能够实际实现,尽管每年研究计算机视觉的文章非常多。
当 然,也有一些其他方面的应用,这些应用并不一定要求计算机的眼睛能够 100% 准确的认识判断到物体对象。加拿大的不列颠哥伦比亚大学教授 David Lowe 就提出了若干计算机视觉的应用产业化方向( http://www.cs.ubc.ca/spider/lowe/vision.html )。从这 份列表来看,计算机视觉现在的应用领域大多集中在某些特定领域。相比计算机科学其他的研究方向,比如操作系统,语义互联网等等,计算机视觉所注重的应用面 向对较广,但是无法向操作系统,搜索引擎那样,实现大规模的产业化。
那么是否可以从某些主流方向的边缘下手呢?比如说很多人都用过 google image search 吧,但是现在的 google image search 是根据图片的文件名来搜索,而非根据图像的内容进行搜索。 Google 鼓励在其基础上面做二次搜索,那么是否可以用计算机视觉技术,当 google 根据文件名搜索一遍之后,在此基础上根据图像里面具体的颜色,纹理,形状和空间关系等信息来提取更加精确的,用户想要得到的图片。然而现在某 些网站( http://www.pixsy.com/ , http://www.picsearch.com/ )依旧采用基于关键字的方法来搜索图片。如果 仅以次和其他巨头比如 google image search , yahoo image search 竞争,很难说会有多大的优势。
Google 为什么会成功,其中主要一点是自己赚钱的同时,也给别人赚钱的机会。这些年做 SEO (搜索引擎优化)的公司和个人就是一种典型代表。计算机视 觉工业的前途在哪里?既然无法向操作系统,搜索引擎那样成为大规模的主导产业,就沿着这些主导产业做一些外围的补充吧,也许更好。
随着这几十年的发展,计算机视觉逐渐融合了其他领域 的方法来提升本领域的研究。这些其他的领域包括模式识别,机器学习,图像处理等等。然而现在学术领域的计算机视觉研究逐渐偏离了实用化的道路。每年关于计 算机视觉的顶级国际期刊和国际会议(包括 IEEE Trans PAMI,ICCV,CVPR, )里的论文,大多需要加入很多的限制条件才能达到某种实验效果。一般来说,所有的实验结果都无法达到 100% 的结果,即使 是在特定数据集上面的实验。如前举的例子,如果汽车自动驾驶采用计算机视觉技术去观测红绿灯,那么很难想象在任意十字路口的情况,车载计算机的摄像头捕捉 红绿灯之后,是否能够 100% 的做到判断正确。这是关系到人身安全的大事,所以这个应用不能够实际实现,尽管每年研究计算机视觉的文章非常多。
当 然,也有一些其他方面的应用,这些应用并不一定要求计算机的眼睛能够 100% 准确的认识判断到物体对象。加拿大的不列颠哥伦比亚大学教授 David Lowe 就提出了若干计算机视觉的应用产业化方向( http://www.cs.ubc.ca/spider/lowe/vision.html )。从这 份列表来看,计算机视觉现在的应用领域大多集中在某些特定领域。相比计算机科学其他的研究方向,比如操作系统,语义互联网等等,计算机视觉所注重的应用面 向对较广,但是无法向操作系统,搜索引擎那样,实现大规模的产业化。
那么是否可以从某些主流方向的边缘下手呢?比如说很多人都用过 google image search 吧,但是现在的 google image search 是根据图片的文件名来搜索,而非根据图像的内容进行搜索。 Google 鼓励在其基础上面做二次搜索,那么是否可以用计算机视觉技术,当 google 根据文件名搜索一遍之后,在此基础上根据图像里面具体的颜色,纹理,形状和空间关系等信息来提取更加精确的,用户想要得到的图片。然而现在某 些网站( http://www.pixsy.com/ , http://www.picsearch.com/ )依旧采用基于关键字的方法来搜索图片。如果 仅以次和其他巨头比如 google image search , yahoo image search 竞争,很难说会有多大的优势。
Google 为什么会成功,其中主要一点是自己赚钱的同时,也给别人赚钱的机会。这些年做 SEO (搜索引擎优化)的公司和个人就是一种典型代表。计算机视 觉工业的前途在哪里?既然无法向操作系统,搜索引擎那样成为大规模的主导产业,就沿着这些主导产业做一些外围的补充吧,也许更好。