机器学习与深度学习
数学那些事
新开微信公众号:程序猿那些事 欢迎关注!!!
展开
-
PumpkinBook 南瓜书
PumpkinBook 南瓜书《周志华机器学习详细公式推导版》完整PDF链接: link.原创 2020-05-21 09:10:51 · 701 阅读 · 0 评论 -
'ascii' codec can't decode byte 0x90 in position 614: ordinal not in range(128)
‘ascii’ codec can’t decode byte 0x90 in position 614: ordinal not in range(128)原:pickle.load(f)改为:pickle.load(f,encoding=‘bytes’)就OK了原创 2019-03-12 16:34:04 · 3672 阅读 · 3 评论 -
机器学习---多变量线性回归
数据检验(判断是否可以做线性回归)import pandas as pdimport numpy as npimport seaborn as snsimport matplotlib.pyplot as pltfrom pandas import DataFrame,Seriesfrom sklearn.cross_validation import train_test_split...原创 2019-03-04 20:17:05 · 1057 阅读 · 1 评论 -
Sigmoid 函数
Sigmoid 函数logistic函数也就是经常说的sigmoid函数,它的几何形状也就是一条sigmoid曲线(S型曲线)。该函数具有如下的特性:当x趋近于负无穷时,y趋近于0;当x趋近于正无穷时,y趋近于1;当x= 0时,y=0.5.优点:1.Sigmoid函数的输出映射在(0,1)之间,单调连续,输出范围有限,优化稳定,可以用作输出层。2.求导容易。缺点:1.由于其软饱和性,...原创 2019-03-03 16:00:16 · 2495 阅读 · 0 评论 -
一个k-means算法实例
import numpy as npdef kmeans(X,k,maxIt):numrow,numlist=X.shapedataSet=np.zeros((numrow,numlist+1))dataSet[:, :-1]=Xcentroids=dataSet[np.random.randint(numrow,size=k), :]#centroids=dataSet[0:2, :...原创 2019-03-05 20:12:37 · 1635 阅读 · 0 评论 -
Python手动实现k-means
import numpy as npimport matplotlib.pyplot as pltdef kmeans(data, cluster_num, method=‘mean’):points = np.array(data)labels = []random_idx = []while True:t = np.random.randint(points.shape[0])...原创 2019-03-05 19:10:15 · 704 阅读 · 0 评论 -
K-Means与KNN
K-Means是无监督学习的聚类算法,没有样本输出;而KNN是监督学习的分类算法,有对应的类别输出。KNN基本不需要训练,对测试集里面的点,只需要找到在训练集中最近的k个点,用这最近的k个点的类别来决定测试点的类别。而K-Means则有明显的训练过程,找到k个类别的最佳质心,从而决定样本的簇类别。当然,两者也有一些相似点,两个算法都包含一个过程,即找出和某一个点最近的点。两者都利用了最近邻(ne...原创 2019-03-05 19:08:43 · 773 阅读 · 0 评论 -
传统K-Means算法流程
1)对于K-Means算法,首先要注意的是k值的选择,一般来说,我们会根据对数据的先验经验选择一个合适的k值,如果没有什么先验知识,则可以通过交叉验证选择一个合适的k值。2)在确定了k的个数后,我们需要选择k个初始化的质心,就像上图b中的随机质心。由于我们是启发式方法,k个初始化的质心的位置选择对最后的聚类结果和运行时间都有很大的影响,因此需要选择合适的k个质心,最好这些质心不能太近。好了,现...原创 2019-03-05 19:07:49 · 2356 阅读 · 0 评论 -
k-means的简单实现
import numpy as npimport matplotlib.pyplot as plt加载数据def loadDataSet(fileName):data = np.loadtxt(fileName,delimiter=’\t’)return data欧氏距离计算def distEclud(x,y):return np.sqrt(np.sum((x-y)**2)) #...原创 2019-03-05 19:06:29 · 1154 阅读 · 0 评论 -
R平方值python实现
import numpy as npfrom astropy.units import Ybarnimport mathdef computeCorrelation(x, y):xBar = np.mean(x)ybar = np.mean(y)SSR = 0varX = 0varY = 0for i in range(0, len(x)): #多少实例diffxxBar =...原创 2019-03-05 16:22:41 · 8213 阅读 · 0 评论 -
皮尔逊相关系数实例
计算两个用户的Pearson 相关性:/**皮尔逊Pearson Correlation对用户X,Y sum2X:X的所有评分项之平方和sum2Y:Y的所有评分项之平方和sumXY:sumX 、sumY的交集之和,即X、Y都评价了的项之和相关性:sumXY / sqrt(sumX^2 * sumY^2)两个变量之间的皮尔逊相关系数定义为两个变量之间的协方差和标准差的商:p(X,Y)...原创 2019-03-05 15:34:08 · 8440 阅读 · 1 评论