一、
在一个数组 nums 中除一个数字只出现一次之外,其他数字都出现了三次。请找出那个只出现一次的数字。
示例 1:
输入:nums = [3,4,3,3]
输出:4
示例 2:
输入:nums = [9,1,7,9,7,9,7]
输出:1
限制:
1 <= nums.length <= 10000
1 <= nums[i] < 2^31
通过次数19,289提交次数24,348
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/shu-zu-zhong-shu-zi-chu-xian-de-ci-shu-ii-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路:
位运算,将每个数字看作二进制,对于每一个位置来说,1和0出现的次数如果除开只出现一次的数字,都会是3的倍数,那么对最后的结果来说,就是每个位置的1的数量mod 3,如果结果为0,则说明只出现一次的数字在这个位置为0,如果结果为1,则表示为1。
更进一步的,如果采用二进制来表示出现的次数,则可以表示为,00,01,10。将这个分为两位分别看待,可以画出状态转换图,借用题解区大佬的图。
来自leecode题解区:https://leetcode-cn.com/problems/shu-zu-zhong-shu-zi-chu-xian-de-ci-shu-ii-lcof/solution/mian-shi-ti-56-ii-shu-zu-zhong-shu-zi-chu-xian-d-4/ 作者 Krahets
对于two来说可以写出状态转换的代码:
if (two == 0):
if (n == 0):
one = one
if (n == 1):
one = ~one
if (two == 1):
one = 0
归纳可得出two的位运算代码为:
//这里的first指的是从右往左的第一个位置
//而two代表的是这个位置二进制所代表的的十进制的值
first = first^num&~second;
同理可更新出one。
完整代码如下:
需要注意,在更新完first之后,上面的状态转换图会发生变化,导致对second的更新代码会和first变成一样的。
class Solution {
public:
int singleNumber(vector<int>& nums) {
int first = 0;
int second = 0;
for(auto num:nums)
{
first = first^num&~second;
second = second^num&~first;
}
//ones = ones ^ num & ~twos
//twos = twos ^ num & ~ones
return first;
}
};
二、
一个整型数组 nums 里除两个数字之外,其他数字都出现了两次。请写程序找出这两个只出现一次的数字。要求时间复杂度是O(n),空间复杂度是O(1)。
示例 1:
输入:nums = [4,1,4,6]
输出:[1,6] 或 [6,1]
示例 2:
输入:nums = [1,2,10,4,1,4,3,3]
输出:[2,10] 或 [10,2]
限制:
2 <= nums.length <= 10000
通过次数37,528提交次数52,194
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/shu-zu-zhong-shu-zi-chu-xian-de-ci-shu-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
位运算,分组
容易想到的是,如果只有一个只出现一次的数字,整个数字求异或即可。那么求解两个数字的题目,考虑能否通过某种方式将两个数字分别分到两组中,然后分别求异或即可。方法就是具体考虑所有数字的某一位,对数组所有数字求异或,结果一定是两个只出现一次的数字在该位求异或的结果,如果结果为1,则说明在这一位两个数字不相等,那么就可以以这一位为依据,将这一位为0的和这一位为1的分成两组,根据上面的推导已经确定两个数在这一位不等,即一个为1一个为0,那么就自然被分到了两组,异或求解即可。
class Solution {
public:
vector<int> singleNumbers(vector<int>& nums) {
vector<int> ret(2,0);
int len = nums.size();
if(len==2)return nums;
int xorsum = 0;
for(auto num:nums)
{
xorsum ^= num;
}
int bit = 0;
for(int i = 0;i<32;i++)
{
if(xorsum>>i&1==1)
{
bit = i;
break;
}
}
for(auto num:nums)
{
if(num>>bit&1==1)
{
ret[0]^=num;
}
else
{
ret[1]^=num;
}
}
return ret;
}
};