0,1,n-1这n个数字排成一个圆圈,从数字0开始,每次从这个圆圈里删除第m个数字。求出这个圆圈里剩下的最后一个数字。
例如,0、1、2、3、4这5个数字组成一个圆圈,从数字0开始每次删除第3个数字,则删除的前4个数字依次是2、0、4、1,因此最后剩下的数字是3。
示例 1:
输入: n = 5, m = 3
输出: 3
示例 2:
输入: n = 10, m = 17
输出: 2
限制:
1 <= n <= 10^5
1 <= m <= 10^6
通过次数44,225提交次数70,658
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/yuan-quan-zhong-zui-hou-sheng-xia-de-shu-zi-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路:
著名的约瑟夫环问题,需要经过推导求出递推公式求解,以下是根据leetcode题解区的一位大佬的解释,我觉得比较易懂,同时添加了一点自己理解的部分:
对于f(n,m)表示,n个数字,每次移动m个位置,进行n-1次移动和删除,最后剩下的元素坐标;
对于f(n-1,m)表示,n-1个数字,每次移动m个位置,进行n-2次移动和删除,最后剩下的元素坐标;
注意这里的坐标分别都是从0计数的,因此我们考虑这样的流程,对于n个数字,首先进行一次删除,则开头的元素移动到坐标(m%n),此时将这个位置重新视为0坐标,则可以应用f(n-1,m),所以可以得出递推公式f(n,m) = [(m%n)+f(n-1,m)]%n。
class Solution {
public:
int lastRemaining(int n, int m) {
int pre =0;
int ans = 0;
for(int i = 1;i<=n;i++)
{
pre = ans;
ans = (pre+m)%i;
}
return ans;
}
};