Sklearn - metrics 源码阅读

本文通过解析sklearn源码中的roc_curve函数,详细介绍了如何计算ROC曲线和AUC值。并给出了具体的实例和计算步骤,帮助读者理解True Positive Rate (TPR)和False Positive Rate (FPR)的计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  想知道sklearn的roc曲线和auc是怎么计算的。所以专门阅读了sklearn的源码。
  /scikit-learn-master/sklearn/metrics/ranking.py
  其中有两个函数值得注意:_binary_clf_curve 和 roc_curve。所以特此举个例子将源码review一遍。

#init y_true and y_score
y_true = np.array([1, 1, 2, 2])
y_score = np.array([0.1, 0.4, 0.35, 0.8])

# output the number of classes
classes = np.unique(y_true)
classes     #array([1, 2])

#判断classes是否符合条件,例如:
np.array_equal(classes, [1]) # False

pos_label = 1   #默认值,如果不是1,0 不设置的话会报错,报错内容为:"Data is not binary and pos_label is not specified"
y_true = (y_true == pos_label)  #将y_true 和pos_label比较,输出为:array([ True,  True, False, False], dtype=bool)

#y_score 最大值对应的索引 + reverse
desc_score_indices = np.argsort(y_score, kind="mergesort")[::-1]     #输出为:[3 1 2 0]

y_score = y_score[desc_score_indices]
print(y_score)   #[ 0.8   0.4   0.35  0.1 ]
y_true = y_true[desc_score_indices]
print(y_true)    #[False  True False  True]


distinct_value_indices = np.where(np.diff(y_score))[0]
print(distinct_value_indices)  #[0 1 2]
threshold_idxs = np.r_[distinct_value_indices, y_true.size - 1]
print(threshold_idxs)          #[0 1 2 3]

tps = np.cumsum(y_true)[threshold_idxs]  #array([0, 1, 1, 2], dtype=int32)
fps = 1 + threshold_idxs - tps   #array([1, 1, 2, 2], dtype=int64)

fpr = fps / fps[-1]  #array([ 0. ,  0.5,  0.5,  1. ,  1. ])
tpr = tps / tps[-1]  #array([ 0. ,  0. ,  0.5,  0.5,  1. ])

最后终于知道了sklearn怎么将fpr和tpr算出来,然后在画roc曲线以及auc图。 ROC曲线的行坐标为FPR,纵坐标为TPR。

但是计算方法好像与下面的TPR和FPR计算方法不一样?

混淆矩阵如下:
混淆矩阵

True Positive Rate(TPR) = TP / (TP + FN)
False Positive Rate(FPR) = FP / (FP + TN)

False Reject Rate(FRR) = 1-TPR = FN / (TP + FN)
False Accept Rate(FAR) = FPR = FP / (FP + TN)

F1 Score = 2 * TP / (2 * TP + FP + FN)

参考资料:
1. sklearn.metrics.roc_curve
2. github 上的源码

以下是sklearn.metrics.roc_auc_score模块的源代码: ```python def roc_auc_score(y_true, y_score, average='macro', sample_weight=None, max_fpr=None, multi_class='raise', labels=None): """Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores. Note: this implementation can be used with binary, multiclass and multilabel classification, but some restrictions apply (see Parameters). Read more in the :ref:`User Guide <roc_metrics>`. Parameters ---------- y_true : array-like of shape (n_samples,) or (n_samples, n_classes) True labels or binary label indicators. The binary and multiclass cases expect labels with shape (n_samples,) while the multilabel case expects binary label indicators with shape (n_samples, n_classes). y_score : array-like of shape (n_samples,) or (n_samples, n_classes) Target scores. In the binary and multilabel cases, these can be either probability estimates or non-thresholded decision values (as returned by `decision_function` on some classifiers). In the multiclass case, these must be probability estimates which sum to 1. The binary case expects a shape (n_samples,), and the scores must be the scores of the class with the greater label. The multiclass and multilabel cases expect a shape (n_samples, n_classes). average : {'micro', 'macro', 'samples', 'weighted'} or None, \ default='macro' If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight : array-like of shape (n_samples,), default=None Sample weights. max_fpr : float or None, default=None If not ``None``, the standardized partial AUC [2]_ over the range [0, max_fpr] is returned. For the multiclass case, ``max_fpr`` should be either ``None`` or ``1.0`` as partial AUC makes sense for binary classification only. multi_class : {'raise', 'ovr', 'ovo'}, default='raise' Multiclass only. Determines the type of configuration to use. The default value raises an error, so either ``'ovr'`` or ``'ovo'`` must be passed explicitly. ``'ovr'``: Computes ROC curve independently for each class. For each class, the binary problem y_true == i or not is solved and the corresponding ROC curve is computed and averaged across classes. This is a commonly used strategy for multiclass or multi-label classification problems. ``'ovo'``: Computes pairwise ROC curve for each pair of classes. For each pair of classes, the binary problem y_true == i or y_true == j is solved and the corresponding ROC curve is computed. The micro-averaged ROC curve is computed from the individual curves and hence is agnostic to the class balance. labels : array-like of shape (n_classes,), default=None Multiclass only. List of labels to index ``y_score`` used for multiclass. If ``None``, the lexical order of ``y_true`` is used to index ``y_score``. Returns ------- auc : float or dict (if ``multi_class`` is ``'ovo'`` or ``'ovr'``) AUC of the ROC curves. If ``multi_class`` is ``'ovr'``, then returns an array of shape ``(n_classes,)`` such that each element corresponds to the AUC of the ROC curve for a specific class. If ``multi_class`` is ``'ovo'``, then returns a dict where the keys are ``(i, j)`` tuples and the values are the AUCs of the ROC curve for the binary problem of predicting class ``i`` vs. class ``j``. See also -------- roc_curve : Compute Receiver operating characteristic (ROC) curve. roc_auc : Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores Examples -------- >>> import numpy as np >>> from sklearn.metrics import roc_auc_score >>> y_true = np.array([0, 0, 1, 1]) >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> roc_auc_score(y_true, y_scores) 0.75 >>> y_true = np.array([0, 0, 1, 1]) >>> y_scores = np.array([[0.1, 0.9], [0.4, 0.6], [0.35, 0.65], [0.8, 0.2]]) >>> roc_auc_score(y_true, y_scores, multi_class='ovo') 0.6666666666666667 >>> roc_auc_score(y_true, y_scores[:, 1]) 0.75 """ # validation of the input y_score if not (y_true.shape == y_score.shape): raise ValueError("y_true and y_score have different shape.") if (not is_multilabel(y_true) and not is_multiclass(y_true)): # roc_auc_score only supports binary and multiclass classification # for the time being if len(np.unique(y_true)) == 2: # Only one class present in y_true. ROC AUC score is not defined # in that case. Note that raising an error is consistent with the # deprecated roc_auc_score behavior. raise ValueError( "ROC AUC score is not defined in that case: " "y_true contains only one label ({0}).".format( format_label(y_true[0]) ) ) else: raise ValueError( "ROC AUC score is not defined in that case: " "y_true has {0} unique labels. ".format(len(np.unique(y_true))) + "ROC AUC score is defined only for binary or multiclass " "classification where the number of classes is greater than " "one." ) if multi_class == 'raise': raise ValueError("multi_class must be in ('ovo', 'ovr')") elif multi_class == 'ovo': if is_multilabel(y_true): # check if max_fpr is valid in this case if max_fpr is not None and (max_fpr == 0 or max_fpr > 1): raise ValueError("Expected max_fpr in range (0, 1], got: %f" % max_fpr) return _multiclass_roc_auc_score_ovr(y_true, y_score, average, sample_weight, max_fpr=max_fpr) else: return _binary_roc_auc_score(y_true, y_score, average, sample_weight, max_fpr=max_fpr) elif multi_class == 'ovr': if is_multilabel(y_true): return _multilabel_roc_auc_score_ovr(y_true, y_score, average, sample_weight) else: return _multiclass_roc_auc_score_ovr(y_true, y_score, average, sample_weight, labels=labels) else: raise ValueError("Invalid multi_class parameter: {0}".format(multi_class)) ``` 这段代码实现了计算ROC AUC的功能,支持二元、多类和多标签分类。其中,分为'ovo'和'ovr'两种多类模式,'ovo'表示一对一,'ovr'表示一对多。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值