因果AI
文章平均质量分 94
分享因果AI前沿研究成果和应用实践
JarodYv
十年C,十年Python,深耕算法和机器学习领域,Python全能开发工程师。
近两年专注于AIGC和大模型应用开发。
热爱数学,分享内容偏硬核烧脑,但绝对干货,绝不雷同。
展开
-
2023需要重点关注的四大AI方向
本文是我认为2023年需要重点关注的四大AI方向,这四个方向有望在今年进一步推动AI的发展,并帮助解决行业面临的一些核心挑战。原创 2023-01-27 11:28:25 · 16381 阅读 · 16 评论 -
因果发现方法概述
直到今天,发现因果关系仍然不是一件简单的事情,要么需要进行精心控制的实验,要么依赖人类的原始直觉。随着技术的不断进步,人工智能可以帮助我们发现因果关系。因果AI能够结合人类直觉和经验,通过观测数据自主发现因果关系。原创 2022-11-08 13:24:40 · 1255 阅读 · 3 评论 -
用Python构建贝叶斯信念网络解决Monty Hall三门问题
本文将向你展示如何利用Python构建简单的贝叶斯信念网络,并用它来进行严格的推理。我们要建模的问题是著名的蒙提霍尔问题(也叫三门问题)。原创 2022-11-07 11:33:26 · 1029 阅读 · 0 评论 -
为什么相关不等于因果
相关不等于因果。图表也会说谎,并非所有的相关性都蕴含因果关系。相关性是科学分析的重要组成部分,但如果使用不当,会带来很多误导。更可怕的是还有人会对图表巧妙包装,将图表设计的更具欺骗性。此时我们需要拿出因果为武器,驱逐虚假关联。原创 2022-11-06 01:25:00 · 1122 阅读 · 0 评论 -
因果图中的重要概念
用直观的图的形式介绍因果图模型中的若干重要概念原创 2022-10-31 07:30:40 · 534 阅读 · 0 评论 -
因果AI如何发现因果
因果发现算法可以从数据中找到因果关系的线索。其中条件独立是众多算法找寻的关键证据。经典的因果发现算法分2类,一类是基于约束的算法,另一类是基于分数的算法。本文介绍了基于约束的算法中最经典的PC算法的算法思想,让大家能够直观理解算法是如何发现因果关系的,并给出了因果发现算法中的一些不足。原创 2022-10-30 10:14:40 · 2035 阅读 · 1 评论 -
条件独立5条重要性质及其证明
条件独立5条重要性质及其证明原创 2021-12-15 19:14:04 · 4365 阅读 · 1 评论 -
结构方程模型
本文对结构方程进行了系统详细的介绍原创 2021-12-15 15:07:16 · 4414 阅读 · 0 评论