第4章 Python 数字图像处理(DIP) - 频率域滤波4 - 单变量的离散傅里叶变换DFT

单变量的离散傅里叶变换

由取样后的函数的连续变换得到DFT

对原函数的变换取样后的业的发展的变换 F ~ ( μ ) \tilde F(\mu) F~(μ),但未给出取样后的函数 f ~ ( t ) \tilde f(t) f~(t)的变换 F ~ ( μ ) \tilde F(\mu) F~(μ)的表达式。
F ~ ( μ ) = ∫ − ∞ ∞ f ~ ( t ) e − j 2 π μ t d t (4.39) \tilde F(\mu) = \int_{-\infty}^{\infty} \tilde f(t) e^{-j2\pi\mu t} dt\tag{4.39} F~(μ)=f~(t)ej2πμtdt(4.39)

F ~ ( μ ) = ∫ − ∞ ∞ f ~ ( t ) e − j 2 π μ t d t = ∫ − ∞ ∞ ∑ n = − ∞ ∞ f ( t ) δ ( t − n Δ T ) e − j 2 π μ t d t = ∑ n = − ∞ ∞ ∫ − ∞ ∞ f ( t ) δ ( t − n Δ T ) e − j 2 π μ t d t = ∑ n = − ∞ ∞ f n e − j 2 π μ n Δ T (4.40) \begin{aligned} \tilde F(\mu) & = \int_{-\infty}^{\infty} \tilde f(t) e^{-j2\pi\mu t} dt = \int_{-\infty}^{\infty} \sum_{n = -\infty}^{\infty} f(t) \delta(t - n\Delta T) e^{-j2\pi\mu t} dt\\ & = \sum_{n = -\infty}^{\infty} \int_{-\infty}^{\infty} f(t) \delta(t - n\Delta T) e^{-j2\pi\mu t} dt \\ & = \sum_{n = -\infty}^{\infty} f_n e^{-j2\pi\mu n \Delta T} \end{aligned} \tag{4.40} F~(μ)=f~(t)ej2πμtdt=n=f(t)δ(tnΔT)ej2πμtdt=n=f(t)δ(tnΔT)ej2πμtdt=n=fnej2πμnΔT(4.40)

μ = m M Δ T , m = 0 , 1 , 2 , ⋯   , M − 1 (4.41) \mu = \frac{m}{M\Delta T}, \quad m = 0, 1, 2, \cdots, M-1 \tag{4.41} μ=MΔTm,m=0,1,2,,M1(4.41)

下面表达式就是我们所求的离散傅里叶变换
F m = ∑ n = 0 M − 1 f n e − j 2 π μ n m / M , m = 0 , 1 , 2 , ⋯   , M − 1 (4.42) F_m = \sum_{n = 0}^{M - 1} f_n e^{-j2\pi\mu n m/M}, \quad m = 0, 1, 2, \cdots, M-1 \tag{4.42} Fm=n=0M1fnej2πμnm/M,m=0,1,2,,M1(4.42)

离散傅里叶反变换
f n = 1 M ∑ m = 0 M − 1 F m e j 2 π μ n m / M , n = 0 , 1 , 2 , ⋯   , M − 1 (4.43) f_n = \frac{1}{M}\sum_{m = 0}^{M - 1} F_m e^{j2\pi\mu n m/M}, \quad n = 0, 1, 2, \cdots, M-1 \tag{4.43} fn=M1m=0M1Fmej2πμnm/M,n=0,1,2,,M1(4.43)

一般二维情况下,使用 x x x y y y表示图像坐标变量并使用 u u u v v v表示频率变量更为直观。离散傅里叶变换对可以改写为
F ( u ) = ∑ x = 0 M − 1 f ( x ) e − j 2 π u x / M , u = 0 , 1 , 2 , ⋯   , M − 1 (4.44) F(u) = \sum_{x = 0}^{M - 1} f(x) e^{-j2\pi u x/M}, \quad u = 0, 1, 2, \cdots, M-1 \tag{4.44} F(u)=x=0M1f(x)ej2πux/M,u=0,1,2,,M1(4.44)

离散傅里叶反变换
f ( x ) = 1 M ∑ u = 0 M − 1 F ( u ) e j 2 π u x / M , x = 0 , 1 , 2 , ⋯   , M − 1 (4.45) f(x) = \frac{1}{M}\sum_{u = 0}^{M - 1} F(u) e^{j2\pi u x/M}, \quad x = 0, 1, 2, \cdots, M-1 \tag{4.45} f(x)=M1u=0M1F(u)ej2πux/M,x=0,1,2,,M1(4.45)

取样和频率间隔的关系

# 例4.4 计算DFT
# x = 0, 1, 2, 3
# f(x) = 1, 2, 4, 4
x = np.arange(4)
y = np.array([1, 2, 4, 4])
fft = np.fft.fft(y)
print('DFT')
print(fft)

# IDFT反变换
ifft = np.fft.ifft(fft)
print('IDFT')
print(ifft)
DFT
[11.+0.j -3.+2.j -1.+0.j -3.-2.j]
IDFT
[1.+0.j 2.+0.j 4.+0.j 4.+0.j]
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jasneik

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值