- 博客(11)
- 收藏
- 关注
原创 【C++基础语法- Datawhale学习打卡】
C++基础语法文章目录前言一、C++是什么?二、基本结构三、数据类型四、循环和分支结构五、代码示例六、总结
2022-04-16 22:38:36
732
原创 2020-09-04
第十二讲练习练习1data = pd.read_csv("C:\\Users\\chen\\Desktop\\python-m notebook\\作业数据\\catNames2.csv")#找出大于800的名字data2 = data[data['Count_AnimalName']>800]data2#找出使用最多的名字#法1,直接寻找# data3 = data[data['Count_AnimalName']==data.max()[0]]###法2,通过排序寻找,默认
2020-09-04 21:57:24
264
原创 2020-09-03
第十讲练习练习1stu_names = ["胡歌","林更新","金世佳","丑娟"]courses = ['语文', '数学', '英语', 'Python', '体育']data_1 = np.array([[87., 74., 98., 84., np.nan],[79., 69., 61., 99., np.nan],[84., 84., 94., 66., np.nan],[90., 60., 72., 90., np.nan]])df = pd.DataFrame(data=dat
2020-09-03 17:13:27
301
原创 2020-08-31
第九讲及练习练习1import csvimport pandas as pdimport randomimport numpy as npfrom functools import reduceimport matplotlib.pyplot as pltfrom matplotlib.ticker import MultipleLocator, FormatStrFormatter#字体设置1:通过全局设置方式使图片可以显示中文刻度,只支持ttf,不能设置ttc字体import m
2020-08-31 22:04:32
339
1
原创 2020-08-27
第八讲练习原始方法:data1_stock = np.loadtxt("C:\\Users\\chen\\Desktop\\python-m notebook\\图片及数据\\大地电磁EMD数据\\EMD1.csv",delimiter=",",dtype="object")data2_stock = np.loadtxt("C:\\Users\\chen\\Desktop\\python-m notebook\\图片及数据\\大地电磁EMD数据\\EMD2.csv",delimiter=",",d
2020-08-27 18:12:46
187
原创 2020-08-25
第七讲练习练习1def auto_label(x,my_y): for x_i,y_i in zip(x,my_y): plt.annotate(f"{y_i}",xy=(x_i,y_i),xytext=(x_i,y_i-1))plt.rcParams['font.sans-serif'] = ['SimHei'] # 步骤一(替换sans-serif字体)plt.rcParams['axes.unicode_minus'] = False # 步骤二(解决坐标轴负数
2020-08-25 17:47:48
184
原创 2020-08-22
第六讲练习创建 2*2 的数组arr1 元素自定义,两种方法#创建 2*2 的数组arr1 元素自定义arr_1 = np.arange(4)arr1 = arr_1.reshape(2,2)#使用reshape,注意reshape不会改变原数组,方法1arr1 = arr_1.reshape(2,-1)#也是方法1,-1为维度根据数据判断(负数就行)arr1 = np.array([[0,1],[2,3]])#正常创造,方法2创建 223 的数组arr2 元素自定义,查看arr2的维度
2020-08-22 11:22:53
223
原创 2020-08-19
第五讲及作业练习1第一种方法,使用open函数f = open('D:\\Download\\餐饮.csv', 'r',encoding="gbk")# 给定文件路径f.read()#读全部# f.readline()#读一行# f.readlines()#读全部第二种方法,使用pandas# pd.read_csv??data_1 = pd.read_csv("D:\\Download\\餐饮.csv",encoding="gbk")print(data_1)练习2
2020-08-19 20:02:28
151
原创 2020-08-17
作业二练习1#最小值160,最大值189,height = [160,163,175,180,176,177,168,189,188,177,174,170,173,181]#求组数ma = max(height)mi = min(height)b = 1bi = int((ma - mi)/b)plt.hist(height,bins = bi,density=True)#标签plt.xlabel('区间')plt.ylabel('频数、频率')plt.title('身高
2020-08-17 23:47:11
169
原创 2020-08-15
第三课作业p = [60,80,40,30,70,90,95]s = [100,50,120,135,65,45,40]a = sorted(zip(p,s)) x = []y = []for i in range(len(a)): x.append(a[i][0]) y.append(a[i][1])x_l = range(len(x))plt.scatter(x_l,y)plt.plot(x_l,y)#刻度s_xt = ['{}元'.format(x[i]
2020-08-15 01:55:17
132
原创 python将多图绘制在同一画布中
python将多图绘制在同一画布中matplotlib绘图axs[3,3]绘制子图subplot(333)绘制子图matplotlib绘图最近在上python数据分析课程,结合之前自己自学和会议论文里面遇到的数据可视化总结了一下多图绘制在一块画布的两种写法。下面是一张七行一列的图片,是我在EMD算法中对原始信号分解得到的,在这之前我已经有七个数组的数据了,我的需求就是把七个数组绘制到同一幅图并且每个y轴都加上信号信息:![这是一张七行一列的图片,是我在EMD算法中对原始信号分解得到的,在这之前我已经
2020-08-13 16:54:16
17260
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅