买卖股票的最佳时机 III
- 前言
一直觉得买卖股票的最佳时机III很难用递归算法实现,因为至少有三个变量互相交织,并且关联变化。直到无意中发现123. 买卖股票的最佳时机 III - 力扣(Leetcode)这篇文章,才解开自己一直以来的茅塞。
- 问题描述(递归方法)
要完全描述递归问题,需首先定义递归的变量,也即递归过程中的控制变量。定义控制变量之前,首先需要定义哪些变量是递归的相关量。首先我们定义了股票可以购买的时间区间段,时间区间段可以感性理解为数组的下标index,每个线标达标交易日的一天;其次我们需要定义每天的交易状态status,交易状态有三个,交易员可以选择不进行任何交易、选择买入、选择卖出共计三个状态。由于题目限制每天可以进行至多两次操作,所以我们需要引入变量k来记录交易的次数,一轮交易定义为成功进行一次买入加上成功进行一次卖出,一轮交易完成后,我们需要对变量k进行自加(k+1)。
如果当天不进行任何买入,那么就是不对当天进行任何操作,那么就相当于保持初始值不变化,相当于对index进行自加,对其它变量保持不变。
新的一天从购入股票开始buy1,购买股票后,持有当前股票不作任何操作可以获得最大利润,那么当天的交易就结束,等待某天股价最高的时候再卖掉;或者买入后,可以立即卖出,假定当天的股价没有波动,就相当于在没有任何收益的前提下,直接抛掉手中的股票;第一次sell1后,可以有两个选择,选择手头不再配股,或者立即买入buy2。后面与前面同理,当第二次卖出完成后,由于当天交易次数的限制,两次交易配额已经用完,股票交易活动到此告一段路。
为了构造合适的递归树,引入买卖状态就成为关键因素之一,定义status为零时,我们需要进行买入操作;定义status为1的时候,我们需要进行卖出操作,在卖出操作的时候,由于已经完成一轮交易,所以记录交易次数的k,需要对k执行自加操作(k=k+1)。
- 代码实现
/**
* @file max_profit.c
* @author your name (you@domain.com)
* @brief
* @version 0.1
* @date 2023-03-21
*
* @copyright Copyright (c) 2023
*
*/
#ifndef MAX_PROFIT_C
#define MAX_PROFIT_C
#include "max_profit.h"
int max_profit(int index, int status, int k, int *prices, int prices_size)
{
if(index==prices_size || k==2)
{
return 0;
}
int no_action=0;
int buy=0;
int sell=0;
no_action=max_profit(index+1,status,k,prices,prices_size);
if(status==1)
{
sell=max_profit(index+1,0,k+1,prices,prices_size)+prices[index];
}
else
{
buy=max_profit(index+1,1,k,prices,prices_size)-prices[index];
}
return find_max(no_action,sell,buy);
}
int find_max(int a, int b, int c)
{
int max;
max=(a>b?a:b);
max=(max>c?max:c);
return max;
}
#endif
- 小结
对于多于三个变量的递归,很多时候其实很难驾驭,从上述提到的博文中学到了很好的判断技巧和选择技巧。同时,对递归的流程和本质有了进一步的了解。
参考资料: