Perplexity困惑度解释

引用wiki上的话

“A model of an unknown probability distribution p, may be proposed based on a training sample that was drawn from p. Given a proposed probability model q, one may evaluate q by asking how well it predicts a separate test sample x1, x2, ..., xN also drawn from p. The perplexity of the model q is defined as

where  b is customarily 2. Better models q of the unknown distribution p will tend to assign higher probabilities q(xi) to the test events. Thus, they have lower perplexity: they are less surprised by the test sample.”

p为未知的概率分布,q为训练得到的概率模型,一般来说,训练的概率模型越好,q(x)会趋向于给的更高,困惑度就会越低,对测试集的泛化能力越好。

“The exponent may also be regarded as a cross-entropy,

P = 2^H(p,q)

where p denotes the empirical distribution of the test sample (i.e., p(x)=n/N} if x appeared n times in the test sample of size N).”

困惑度也可以认为是交叉熵的指数形式,两者都是用于度量两个概率分布间的差异性信息,p为测试集的经验分布,q为训练出的概率模型,两个模型越接近,交叉熵越小,困惑度也越小。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值