高频面试题:秒杀场景设计

秒杀这个话题到现在来说已经是一个老生常谈的话题了,不过因为又临近一年一度的双11,而且发现前段时间无论是阿里还是腾讯一些大厂其实还是在频繁的问到这个场景题,所以还是准备拿出来说说。

秒杀从规模上来说可以分为大秒和小秒。大秒指的是比如双11这种特定的节日,商品规模超大、价格超低、流量超大的这种类型活动,小秒一般指的是商家自己配置的一些时段类型的活动,由商家自己指定时间上架。从形式来说还可以分为单时段秒杀和多时段秒杀。但是在这个场景里,我们一般就是指的单时段大型秒杀。

秒杀设计要面对的压力和难度有几点:

  1. 怎么保证超高的流量和并发下系统的稳定性?如果峰值的QPS达到几十万,面对巨大的流量的压力系统怎么设计保证不被打崩?

  2. 怎么保证数据最终一致性?比如库存不能超卖,超卖了那亏本的要么就是商家要么就是平台,用户反正不背这个锅,超卖了就今年325预订。

当然,涉及到这种大型的活动,还需要考虑到数据统计分析,总不能活动做完了,效果不知道怎么样。

系统架构

假设今年的双11预估峰值QPS将会有50万(我随便扯的),而根据我们平时的经验单机8C8G的机器可以达到1000左右的QPS,那么从理论上来说我们只要500台机器就可以抗住了,就有钱任性不行?这么设计的话只能出门右转不送了。

流量过滤

本质上,参与秒杀的用户很多,但是商品的数量是有限的,真正能抢到的用户并不多,那么第一步就是要过滤掉大部分无效的流量。

  1. 活动开始前前端页面的Button置灰,防止活动未开始无效的点击产生流量
  2. 前端添加验证码或者答题,防止瞬间产生超高的流量,可以很好的起到错峰的效果,现在的验证码花样繁多,题库有的还要做个小学题,而且题库更新频繁,想暴力破解怕是很难。当然我知道的还有
<think>好的,用户希望获取关于Redis的高频面试题汇总及解析。我需要结合之前提供的Spring面试问题结构,并参考用户提供的三个引用内容来组织回答。首先,我需要确认用户提供的引用内容中的关键点,然后按照逻辑分类整理。 首先,引用[1]中提到了Redis的缓存问题(穿透、击穿、雪崩)、持久化机制、过期删除策略、内存淘汰策略、双写一致性、Redission分布式锁、高可用策略(主从复制、哨兵模式、分片集群)、以及性能相关的问题(单线程为何高效、I/O模型)。引用[2]详细解释了Redis单线程的原因和工作流程,引用[3]则介绍了Redisson的功能。 接下来,我需要将这些内容分门别类,确保结构清晰。比如分为缓存问题、持久化、内存管理、分布式锁、高可用、性能优化等部分。每个部分需要包含问题描述、原因、解决方案,并适当引用提供的引用内容。 同时,用户之前的Spring回答结构使用了核心机制、IoC、AOP等分类,我可以模仿这种结构,但根据Redis的特点调整。例如,分为缓存问题、持久化机制、内存管理、分布式锁、高可用架构、性能优化等。 需要注意每个问题要简明扼要,给出关键点和解决方案,同时添加引用标记。例如,在解释缓存穿透时,引用[1]中的解决方案,如布隆过滤器和空值缓存。在讨论单线程高效原因时,引用[2]中的解释,并结合I/O多路复用模型。 另外,用户可能希望问题解析后有相关问题,如示例中的Spring部分。因此,最后需要生成相关问题,确保覆盖Redis的其他重要主题,如数据结构、集群模式、事务处理等。 需要检查是否所有高频问题都已涵盖,比如双写一致性、Redisson分布式锁的实现、主从复制机制、哨兵模式等,确保没有遗漏关键点。同时,确保引用标记正确对应,比如引用[1]用于缓存问题和持久化,引用[2]用于单线程性能,引用[3]用于Redisson部分。 最后,保持回答的专业性和可读性,使用技术术语但不过于晦涩,结构清晰,分点明确。确保每个部分的解析准确,解决方案实用,符合实际面试中的常见问题。</think>### Redis 高频面试题汇总及解析 --- #### 一、缓存问题 1. **缓存穿透** - **问题**:大量请求查询**不存在的数据**(如无效 ID),绕过缓存直接访问数据库。 - **原因**:恶意攻击或业务逻辑缺陷[^1]。 - **解决方案**: - **布隆过滤器**:预加载有效键值,拦截非法请求。 - **空值缓存**:对无效查询结果缓存空值(设置短过期时间)。 2. **缓存击穿** - **问题**:**热点 Key 过期瞬间**,大量请求直接穿透到数据库。 - **解决方案**: - **互斥锁**:通过 Redis 的 `SETNX` 命令实现分布式锁,仅允许一个线程重建缓存。 - **逻辑过期**:对 Key 设置逻辑过期时间(业务字段控制),异步更新缓存[^1]。 3. **缓存雪崩** - **问题**:**大量 Key 同时过期**或 Redis 宕机,导致数据库压力激增。 - **解决方案**: - **随机过期时间**:为 Key 添加随机偏移量(如基础时间 ± 10 分钟)。 - **多级缓存**:结合本地缓存(如 Caffeine)和分布式缓存。 - **集群高可用**:通过主从复制、哨兵模式保障服务可用性[^1]。 --- #### 二、持久化机制 4. **RDB 与 AOF 的区别与选择** - **RDB**(快照): - **原理**:定时生成内存数据的二进制快照文件(`dump.rdb`)。 - **优点**:恢复速度快,适合备份。 - **缺点**:可能丢失最后一次快照后的数据。 - **AOF**(追加日志): - **原理**:记录所有写操作命令(如 `SET`、`DEL`),通过重放恢复数据。 - **优点**:数据完整性高(可配置同步频率:`always`/`everysec`/`no`)。 - **缺点**:文件体积大,恢复速度慢。 - **选择**:生产环境通常**混合使用**(RDB 定期备份 + AOF 增量记录)[^1]。 --- #### 三、内存管理 5. **过期键删除策略** - **惰性删除**:访问 Key 时检查是否过期,过期则删除。 - **定期删除**:Redis 随机抽样检查并删除过期 Key(平衡 CPU 与内存)。 6. **内存淘汰策略** - **8 种策略**(通过 `maxmemory-policy` 配置): - `volatile-lru`:从设置了过期时间的 Key 中淘汰最近最少使用的。 - `allkeys-lru`:从所有 Key 中淘汰 LRU。 - `volatile-ttl`:淘汰剩余存活时间最短的 Key。 - `noeviction`(默认):禁止淘汰,内存不足时返回错误。 --- #### 四、分布式锁与一致性 7. **Redisson 分布式锁实现** - **原理**:基于 Lua 脚本保证原子性,通过 `hash` 结构存储锁信息(Key:锁名,Field:线程 ID,Value:重入次数)。 - **锁续期**:通过 `watchdog` 机制自动续期(默认 30 秒,每 10 秒检查一次)。 - **可重入性**:记录线程 ID 和重入次数,同一线程可多次加锁[^3]。 8. **双写一致性方案** - **强一致**: - **延迟双删**:先删缓存 → 更新数据库 → 延迟再删缓存。 - **读写锁**:读操作加读锁,写操作加写锁。 - **最终一致**: - **消息队列**:通过 Canal 监听数据库变更,异步更新缓存[^1]。 --- #### 五、高可用架构 9. **主从复制** - **流程**: 1. **全量复制**:从节点首次连接主节点时,主节点生成 RDB 文件并传输。 2. **增量复制**:后续通过复制缓冲区同步写命令。 - **问题**:主从延迟可能导致读取旧数据(可强制读主库或容忍延迟)。 10. **哨兵模式(Sentinel)** - **功能**:监控主节点健康状态,自动故障转移(选举新主节点)。 - **脑裂问题**:网络分区导致多个主节点,可通过 `min-slaves-to-write` 配置避免[^1]。 11. **分片集群** - **原理**:数据按槽位(16384 slots)分布到多个节点,支持水平扩展。 - **读写流程**:客户端根据 Key 的 CRC16 值计算槽位,直接访问对应节点。 --- #### 六、性能优化 12. **Redis 单线程为何高效?** - **原因**: 1. **纯内存操作**:数据存储在内存中。 2. **I/O 多路复用**:通过 epoll/kqueue 实现非阻塞网络模型,单线程处理多连接。 3. **避免上下文切换**:无多线程竞争开销[^2]。 - **6.0 多线程**:仅网络 I/O 处理多线程化,核心逻辑仍为单线程。 --- ### 相关问题 1. **Redis 如何实现事务?与 MySQL 事务有何区别?** 2. **Redis 的 HyperLogLog 是什么?适用哪些场景?** 3. **如何通过 Redis 实现分布式限流?** 4. **Redis 的 Big Key 问题如何排查与解决?** 5. **Redis 在秒杀场景中的典型应用方案?** [^1]: Redis 缓存设计与高可用实践 [^2]: Redis 单线程模型与性能优化 [^3]: Redisson 分布式锁实现原理
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值