自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

曾经“等你生日那天”都遥远得像未来,如今却可欢愉的挥手说“下个十年见”

记录多年 Java 与架构实践,包括学习 Python、Go 的脚印,延伸产品设计与 AI 技术的探索实战。 沉淀经验、分享方法、记录成长,愿与你一道在技术长河中持续精进。

  • 博客(296)
  • 资源 (10)
  • 问答 (29)
  • 收藏
  • 关注

原创 微服务与领域驱动设计:构建高内聚低耦合系统的指南

领域驱动设计DDD是一种设计思想,它可以同时指导中台业务建模和微服务设计(中台本质是业务模型,微服务是业务模型的系统落地),领域驱动设计强调领域模型和微服务设计的一体性,先有领域模型然后才有微服务,而不是脱离领域模型来谈微服务设计。

2020-03-26 18:34:46 1762566 1994

原创 深入解析Spring Cloud Config:多样配置中心的实现与高可用策略

这篇文章探讨了配置中心的重要性及其在分布式系统中的应用,特别关注Spring Cloud Config。文章首先介绍了配置中心的由来、功能及选择标准,然后详细阐述了Spring Cloud Config的基本实现方法,包括结合Git、关系型数据库(MySQL)和非关系型数据库(MongoDB)的方案。此外,还讨论了配置中心的高可用性、客户端自动刷新机制及安全认证等扩展功能。最后,文章对比了Spring Cloud Config与Apollo的特性,强调Apollo在企业级应用中的优势。

2019-02-14 14:36:20 1679676 2706

原创 深入理解服务发现与注册:从单体架构到微服务时代的演进

本文首先回顾了服务发现与注册技术在不同系统架构时代的应用演进,分析了单体架构、SOA架构和现代微服务架构下的实现方式和挑战。随后,文章详细介绍了服务发现与注册的技术选型,并深入探讨了Eureka作为一种基于AP原则的服务注册中心的设计理念,包括其如何解决服务实例注册、剔除和信息一致性问题。接着,本文分析了Eureka的基本架构和细化结构,包括注册中心服务器、服务提供者和消费者的角色和功能。最后,文章讨论了Eureka的高可用方案、区域亲和性以及参数调优与监控策略,帮助读者更好地理解和应用这一关键技术组件来构

2019-02-14 14:28:33 1684212 1426

原创 Python 文件读写核心机制与最佳实践

本文系统讲解了 Python 文件读写的基础与工程实践,从文件对象、打开与关闭、上下文管理,到文本与二进制文件读写、文件指针、编码问题及异常处理,辅以丰富代码示例与性能、安全提示。通过日志分析工具的实际项目案例,将理论与实践结合,展示大文件处理、流式读取、随机访问和编码容错的应用方法。文章旨在帮助开发者掌握高效、可靠、可维护的文件操作技巧,提高日常开发与工程实践能力。

2026-01-01 11:17:32 307

原创 Python 项目文件组织与工程化实践

本文系统梳理了 Python 项目的文件组织与工程化实践方法。内容涵盖单文件职责、模块拆分、包结构设计、可执行入口管理、配置分离、测试体系构建以及常见项目结构范式。通过分析常见错误和重构策略,文章提炼出跨项目适用的最佳实践与设计心法,强调结构应服务变化、入口与配置可控、测试可验证、依赖单向分层,为开发者提供可维护、可扩展、可测试的工程化指导。

2026-01-01 11:02:46 310

原创 Python 模式匹配与高效正则表达式:从语言特性到工程级简单实践

本文系统讲解 Python 中的模式匹配与高效正则表达式实践,从计算模型与形式语言基础出发,深入解析 re 模块的工作原理与性能特性,系统总结正则设计原则与工程级优化方法,并引入 Python 3.10+ 的结构化模式匹配(match-case)。通过大量实战案例与反模式分析,逐步引导读者从“会写正则”进阶为“设计匹配系统”,最终构建高性能、可维护、可扩展的规则与解析引擎。

2026-01-01 10:32:11 353

原创 从路径抽象到安全归档 Python 文件组织实战

本文系统介绍了 Python 文件组织的工程实践方法,涵盖路径抽象与安全处理、文件和目录的创建、复制、移动及删除、目录树遍历、文件归档与 ZIP 压缩等内容。通过分阶段、规则驱动的流程设计,文章不仅提供了完整代码示例,还强调了工程级安全、防护与可复现性。读者将掌握从单文件操作到自动化文件组织系统的全流程能力,建立可靠、可维护的文件组织心法。

2026-01-01 10:05:46 459

原创 Self‑RAG:让大模型“多想一步”的自反思检索增强生成机制

本文系统介绍了 Self‑RAG框架,其核心在于引入自我反思机制,使大型语言模型在生成前后能够动态评估检索需求与输出质量。通过按需检索、反思令牌和生成-批判一体化流程,Self‑RAG 显著提升了模型在开放域问答、事实验证和长文本生成任务中的准确性与一致性,同时减少幻觉与错误输出。文章还探讨了该机制的实现挑战、系统复杂性及在法律、金融、医疗等高可靠性场景中的应用前景,为大模型在专业任务中的可信生成提供了可行路径。

2025-12-29 12:22:08 973 1

原创 从多种数据源中获取资料:推进 RAG 向结构化与图数据检索的融合

本文介绍了如何将结构化数据库和知识图谱纳入 RAG(Retrieval‑Augmented Generation)体系,提升智能问答和决策支持能力,涵盖 NL2SQL 与 Structured RAG、Graph-RAG 与图知识库构建,并重点分析了 Schema 理解、多源融合及查询安全等关键挑战,同时展望了跨结构化数据检索的发展趋势。

2025-12-29 12:21:55 971

原创 Corrective Retrieval Augmented Generation(CRAG):构建更可靠的信息抽取与生成系统

本文围绕 Corrective Retrieval Augmented Generation(CRAG)展开,系统介绍了其提出背景、核心思想与整体架构。文章重点阐述了 CRAG 如何在传统 RAG 检索结果相关性不足的情况下,通过检索质量评估、知识片段提炼以及互联网补充搜索等机制,对信息获取路径进行纠正与增强,从而提升生成结果的准确性与覆盖范围。同时结合工程实现策略与典型应用场景,分析了 CRAG 在实际系统中的价值与优势,为构建更可靠、更具鲁棒性的智能问答与知识生成系统提供了实践参考。

2025-12-29 12:21:40 688 1

原创 快速读懂 RAG 的原理、实现与工程实践

在大语言模型广泛应用的背景下,模型在专业知识、私域数据与实时信息场景中仍面临准确性与幻觉问题。检索增强生成(RAG)通过将信息检索与文本生成相结合,成为当前大模型工程化落地的核心技术范式之一。本文以“导游助理”为类比,系统阐述 RAG 的基本形态与本质思想,从工程视角拆解其索引构建、检索与生成流程,并结合阿里云 AI 助理的真实案例说明 RAG 在企业级场景中的应用价值。最后,通过一个无需编写代码的私域知识问答实验,完整展示 RAG 从概念到系统落地的实践路径,为构建可控、可靠的大模型应用提供参考。

2025-12-29 12:20:47 789

原创 提升 RAG 检索质量:构建高效可用的知识检索管道

本文系统梳理了提升检索增强生成(RAG)系统质量的核心策略,从知识库构建、文档清洗与解析,到 chunk 切分、句子滑动窗口、自动合并检索,再到 Embedding 与 ReRank 模型优化,以及聚类索引构建,全面阐述了各环节对检索准确性与生成质量的影响。文章强调,高质量的检索是生成可靠答案的前提,并结合中文场景和实际工程实践提供了可操作的方案与模型选型建议,为构建高效、稳健的 RAG 系统提供参考。

2025-12-29 12:20:15 1011

原创 生产级提升 RAG 检索增强策略体系的关键策略

本文系统梳理了RAG在生产级问答系统中的关键优化策略,包括问题补全、多路召回与融合、Step‑Back 抽象理解、问题分解以及假设驱动检索(HyDE)。文章详细分析了每种策略的设计思路、工程实现及适用场景,强调通过自动补全用户问题、扩展检索视角、抽象宏观语义和生成假设答案,可以显著提升检索召回覆盖率、答案准确性与系统鲁棒性。最终指出,这些策略既可独立应用,也可组合部署,是 RAG 从“能用”走向“可规模化、生产级智能应用”的核心能力。

2025-12-29 12:20:01 690

原创 持续改进 RAG 应用效果:从“能用”到“好用”的系统化方法

本文系统梳理了企业级 RAG(检索增强生成)系统的持续优化策略,强调从评测体系建设入手,通过提升检索质量、优化文本切分与语义检索、改进问题理解、多源信息融合以及引入自我反思机制等方法,提升系统的准确性、稳定性和专业性。文章指出,RAG 的优化是一个持续演进的工程过程,需在数据质量、检索策略、生成模型能力与反馈机制等多维度协同推进,以实现从“能用”到“好用、可信、可扩展”的目标。

2025-12-29 12:19:46 625

原创 初识大模型能力补全插件机制

本文系统介绍了大模型插件的核心概念、能力边界与工程价值,阐述了插件如何通过工具化能力弥补大语言模型在实时数据获取、精确计算与外部系统操作方面的不足。文章结合数学计算、代码解释器等典型示例,直观展示插件对模型能力增强的实际效果,并从架构层面解析了大模型“识别需求—选择工具—执行调用—整合结果”的插件工作机制。最后,以阿里云百炼平台为例,说明大模型 API 插件在企业级场景中的落地方式与扩展空间,帮助读者全面理解插件机制在推动大模型从“对话工具”走向“智能中枢”过程中的关键作用。

2025-12-29 12:19:27 864

原创 提示词工程(Prompt Engineering):人与大语言模型之间的对话艺术与工程体系

本文系统梳理了提示词工程在大语言模型应用中的核心地位与工程价值,从概念认知、基础技巧到进阶策略,再到可落地的工程化流程,完整呈现了一套从“会用模型”到“稳定控制模型行为”的方法论体系。文章强调,提示词工程并非零散技巧的堆砌,而是一种融合需求分析、结构化设计、评估反馈与持续迭代的工程实践。通过引入角色分配、思维链、自洽性、提示链、RAG 等策略,并结合 CI/CD 式的优化流程,提示词逐步演变为可维护、可评估、可放大的核心工程资产,为构建高质量、可扩展的大模型应用提供了关键支撑。

2025-12-29 12:19:13 992

原创 从 1 万条用户反馈到结构化洞察:基于通义千问 API 的文本分析实战

面对上万条非结构化用户反馈且分析周期极短的现实挑战,传统人工与规则方法已难以满足效率与质量要求。本文以产品调研场景为例,系统介绍了如何基于阿里云通义千问大模型 API,实现用户反馈的自动化分类分析,并通过单条调用、Excel 批量处理及通义灵码辅助开发等实践路径,展示大模型在真实业务中的落地方式与工程价值。文章从需求拆解、技术选型到实施细节层层展开,旨在帮助产品、运营及技术人员理解并高效利用大模型能力,加速非结构化文本向可决策信息的转化。

2025-12-29 12:18:45 706

原创 提示词工程实战指南:从概念认知到可验证的高质量 Prompt 设计

随着大语言模型在各类工作场景中的广泛应用,提示词(Prompt)设计逐渐成为影响模型输出质量的关键因素。本文系统介绍了提示词的基本概念与典型应用场景,重点从工程视角深入解析提示词设计的核心原则与高级技巧,并通过可复现实验方法验证提示词优劣差异。文章旨在帮助读者建立一套可验证、可复用、可持续优化的提示词工程方法论,从而真正释放大模型的生产力价值。

2025-12-29 12:18:32 1019

原创 大模型是如何工作的?从原理到通义生态的落地实践

本文系统介绍了大语言模型(LLM)的核心原理及其在实际应用中的落地实践。文章首先阐述了大模型通过分词化、Token ID映射和自回归生成机制实现对自然语言的理解与推理的过程;随后结合阿里云通义大模型体系,详细分析了通义千问和通义万相在政务、工业、科研、文化创意等多个行业的应用效果,并介绍了百炼大模型服务平台的功能和价值,展示了企业如何通过平台快速构建和部署大模型应用。文章强调,大模型的真正价值在于与实际业务场景的深度融合,为企业和开发者提供可量化的效率提升和智能化能力。

2025-12-29 12:14:35 969

原创 一场技术范式的持续演进:快速掌握大模型基础

本文系统梳理了人工智能从规则驱动到数据驱动、从机器学习与深度学习走向大模型时代的技术演进路径,重点阐释了大模型产生的背景、训练流程及其“好用”的本质原因。文章从预训练、监督微调与人类反馈强化学习等工程视角,解析大模型能力形成机制,并进一步总结其核心特征与主要类型,包括大语言模型与多模态大模型。通过对统一交互范式、能力编排与产业落地的分析,文章指出:大模型正在从单一技术能力,演变为支撑企业与产业智能化的新一代基础设施。

2025-12-29 12:14:14 557

原创 用Coze打造智能文档整理助手:从创建到发布指南

本文介绍了如何在 Coze 平台 创建、配置和发布一款文档整理智能体。文章首先说明了智能体开发的背景与需求,包括内容提取、结构化整理、语言风格分析和数据提取等功能;随后详细讲解了设计方案、技术选型、大模型和插件配置流程;最后介绍了智能体的搭建、预览调试及发布到扣子商店的完整操作步骤。通过本文,用户可以快速掌握智能体开发流程,实现高效文档管理与内容分析。

2025-12-29 12:13:55 42619 88

原创 Coze文章仿写:智能体 + 工作流实现内容自动生成与插图输出

通过本教程,我们完成了一个从 0 到 1 的完整智能体搭建过程。从需求分析、模型选择、插件添加,到工作流绘制、插图生成、意图识别、变量聚合,再到人设与开场白的细致调整,每一步都清晰可见且可独立复用。能读:读取网页、文档、文本等各种资料能写:总结、提炼、结构化、仿写文章能画:根据文章主题自动生成插图,并可智能切换模型风格当你把这个智能体发布到扣子商店,它不仅是一个工具,更是你专属的内容助手,可以为自己服务,也能帮助更多用户提高效率。到这里,一个真正“专业、可用、可复用”的文档整理智能体就彻底搭建完成了。

2025-12-29 12:13:46 28660 57

原创 AI赋能原则10解读思考:当人人都能从 AI 获益,人类整体将跨入新的生产力时代

本文基于霍夫曼《AI赋能》的第十条原则,系统解析了“政府 2.0”在 AI 时代的核心意义:政府的价值不再在于管理与监管,而在于通过建设国家级 AI 基础设施,让每个普通人都能获得智能化能力提升,从而推动社会整体跃升。文章从治理模式升级、AI 的普惠效应、数据治理体系、智能公共服务、产业协同智能等维度展开,揭示 AI 将重塑全球不平等结构、加速创新爆发并提升社会稳定性。政府 2.0 不仅是国家现代化,更是文明结构的历史性跃迁。

2025-12-29 12:13:25 21992 63

原创 短期内快速掌握Python编程基础

本文从工程实践视角出发,对 Python 基础知识进行了系统梳理与总结。内容涵盖运行环境、基础语法、控制流、函数、字符串处理以及列表、字典、集合等常用数据结构,并结合可运行示例,帮助读者建立清晰、连贯的语言认知体系。文章不追求速成,而强调理解与动手实践,适合初学者入门,也可作为有编程经验读者回顾 Python 基础的参考材料,为后续深入学习与实际应用打下稳定基础。

2025-12-28 11:47:19 137656 205

原创 全面击破工程级复杂缓存难题

本文详细探讨了缓存技术在现代分布式系统中的应用与优化,涵盖本地缓存与分布式缓存的基本概念和实际应用。分析了旁路缓存模式、读写穿透模式和异步写缓存模式,并从强一致性和最终一致性两个角度提出解决方案。针对缓存穿透、缓存雪崩、缓存击穿和热点key问题,提出了多级缓存、多副本、热点key拆分等策略。最后,介绍了本地缓存+双缓存方案,通过主备缓存切换、数据总线重试机制和自动校对任务,确保系统高可用性和数据一致性。

2025-12-28 11:45:49 76937 1954

原创 如何在分布式环境中实现高可靠性分布式锁

通过选择合适的分布式锁实现方式,可以有效提升系统的可靠性和一致性,确保业务逻辑的正确执行。在实际应用中,需要根据具体场景选择合适的实现方式,并进行适当的优化和调整,以应对分布式环境下的复杂挑战。

2025-12-28 11:45:40 74189 1590

原创 优化分布式系统性能:热key识别与实战解决方案

热key问题在分布式缓存系统中是一个常见但具有挑战性的难题。有效地发现和处理热key不仅可以提升系统的性能和稳定性,还能显著改善用户体验。本文从热key的定义及其危害出发,深入探讨了热key产生的多种原因,并介绍了几种主流的热key发现解决方案。通过人为预测,客户端监控,机器层面监控,Redis服务端Monitor以及热点发现系统等多种手段,可以及时识别并处理潜在的热点key。每种解决方案都有其独特的优势和局限性,应根据具体业务场景选择合适的策略进行实施。

2025-12-28 11:45:31 105280 1238

原创 高并发场景下的缓存雪崩探析与应对策略

在高并发场景中,缓存作为前置查询机制,显著减轻了数据库的压力。然而,缓存雪崩问题依然存在,可能导致大量请求直接涌入数据库,引发系统性能瓶颈甚至崩溃。本文探讨了缓存雪崩的定义和成因,提出了三种应对策略:分散过期时间、提前演练压测、cache高可用和后端数据库限流。通过分散缓存失效时间、提前发现和优化系统性能瓶颈,以及提升缓存资源的可用性和保护数据库的稳定性,这些策略可有效防止缓存雪崩,保障系统在高并发情况下的可靠性和性能。

2025-12-28 11:45:21 103692 1530

原创 高并发场景下的缓存击穿问题探析与应对策略

在高并发场景中,缓存作为前置查询机制,显著减轻了数据库的压力,提高了系统性能。然而,缓存击穿问题可能导致大量请求同时到达数据库,引发系统性能瓶颈甚至崩溃。本文详细探讨了缓存击穿的定义和成因,提出了三种应对策略:互斥锁、软过期+互斥锁、静态数据+Lazy Expiration。通过引入分布式锁和逻辑过期时间等机制,这些策略可以有效防止缓存击穿,减少数据库压力,确保系统在高并发情况下的稳定性和性能。

2025-12-28 11:45:13 104013 1254

原创 高并发场景下的大 Key 问题及应对策略

本文探讨了高并发场景下的大 Key 问题及应对策略。大 Key 可能导致响应超时和数据不均衡,严重影响系统性能和稳定性。针对这些挑战,文章提出了拆分大 Key、分拆集合数据和数据压缩等多种解决方案。拆分大 Key 可以减轻单节点压力,提高系统吞吐量;分拆集合数据和合理分片则有助于优化数据访问效率和负载均衡;而数据压缩技术则能减少存储空间和网络传输成本。这些策略的综合应用有助于提升缓存系统在高并发环境下的可靠性和性能表现。

2025-12-28 11:45:04 104256 879

原创 高并发场景下的缓存穿透问题探析与应对策略

本文探讨在高并发场景下,缓存穿透问题对系统稳定性和性能的威胁。缓存穿透是指恶意请求或不存在的数据频繁穿透缓存直达数据库,严重影响系统的效率和资源利用率。为了有效应对这一挑战,文章详细介绍了三种主要的解决策略:缓存空结果、参数合法性校验和布隆过滤器的应用。每种策略都包括了具体的实施方法和技术实现,以及其在提升系统性能方面的优势和局限性。通过本文的阐述,读者将能够深入理解缓存穿透问题的本质及其解决方案,为设计和优化高并发系统提供实用的指导和技术支持。

2025-12-28 11:44:55 1704021 1589

原创 Redis Cluster:从数据分布到故障转移的全方位解读

本文深入探讨了Redis Cluster的核心原理与实现,涵盖了数据分布、节点通信、集群伸缩、请求路由、故障转移及运维管理等多个方面。文章首先介绍了Redis Cluster的三种数据分布方案,重点分析了虚拟槽分区方案的优势。随后,详细解析了节点间的Gossip消息通信机制以及请求路由原理,帮助读者理解集群的高效运作。对于集群的扩容与缩容,本文提供了操作步骤与注意事项,特别关注了故障转移机制与集群运维中的挑战。通过这些内容,读者可以更好地掌握Redis Cluster的架构与实践,提升分布式系统的性能与可靠

2025-12-28 11:44:45 1770563 1547

原创 AI赋能原则9解读思考:高智能 AI 时代的人类生存与发展之道-协同进化

文章围绕霍夫曼《AI赋能》中“与高智能 AI 目标一致、协同进化”的原则,分析了 AI 对人类能力和角色的挑战,强调通过理解 AI、目标对齐与双向协作,实现能力放大与长期生存。文章提出能力重构与行动指南,呼吁个人、组织和社会主动构建人机协作生态,以协同进化实现安全、创新与可持续发展。

2025-12-22 11:28:30 22402 72

原创 AI赋能原则8解读思考:当 AI 能“完美决策”-为什么动态契约才是安全之钥

当 AI 拥有高度决策能力时,固定规则无法确保安全与有效。必须通过“动态契约”——持续调整、实时监督、责任共担——才能让 AI 在复杂环境中真正成为可靠的决策伙伴,而不是潜在的风险源。

2025-12-22 11:28:23 22110 61

原创 快速学习GO语言总结

针对有一定计算机语言基础人员快速掌握go语言,直接快速开始学习之旅

2025-12-21 18:16:17 87059 1077

原创 巨大 JSON / 图结构数据架构层面选型:该放 Redis 还是 MongoDB?

本文从数据特征出发,围绕架构定位、性能延迟、存储成本、可维护性与扩展性等多个维度,对 Redis 与 MongoDB 在“大 JSON / 图结构数据”场景下的表现进行了系统对比。通过分析内存成本、序列化开销、一致性风险以及长期演进能力,给出以 MongoDB 作为主存储、Redis 作为热点缓存的分层架构建议,帮助在高并发、数据规模持续增长的系统中做出更稳健的存储决策。

2025-12-21 18:16:02 16613 60

原创 借助DeepSeek思考产业落地:蒸馏、小模型微调

本文指出行业真正的难题不是大模型能力,而是数据不足、成本过高与部署受限。DeepSeek-R1 无法直接微调,因此蒸馏成为最现实的落地方案:让 R1 的深度推理能力迁移到更小的 7B–70B 模型。文章对比了 R1(推理专家)与 V3(通用模型)的差异,并给出构建“小而强”行业模型的路径:R1 蒸馏 → 行业 SFT → 私有化部署。核心观点是:DeepSeek 的价值不在参数,而在让小模型也能拥有深度思考能力,从而真正走入行业。

2025-12-21 18:15:50 21508 61

原创 AI赋能原则7解读思考:AI时代构建可组合的能力比单点专业更重要

在AI浪潮下,单点技能像沙滩上的细沙,轻易被风吹散;而可组合能力则如坚固的沙堡,由多块技能模块和AI能力搭建而成,灵活、坚韧、能抵御变化。掌握它的人和组织,才能在未来复杂世界中稳稳立足,创造不可复制的价值。

2025-12-21 18:14:26 22233 71

原创 AI赋能原则6解读思考:深度专业、跨界能力与工具协同的复合竞争力-AI时代的人才新逻辑

在AI时代,单一专业深度已不足以支撑竞争力。霍夫曼第六条原则强调,专业知识需与跨界能力、AI工具协同和系统性思维结合。本文解析该原则,提出从深度+广度构建复合能力、跨界协作及快速实验迭代的实践路径,帮助个人与组织在复杂环境中生存与创造价值。

2025-12-21 18:14:13 22821 60

原创 AI赋能原则5解读思考:AI时代必须面对的现实与应对策略-当“最聪明的大脑”犯低级错误

“即使是最强大的模型,也会犯最低级的错误”,指出 AI 的错误具有结构性、概率性和不可完全消除的特征,并在企业、个人和社会层面形成系统性风险。文章强调,AI 永远依赖人类监督,其能力增长速度快于可靠性提升,完全托管 AI 不现实。为应对错误常态化,需要建立个人判断力、组织安全流程和社会动态监管三层机制。核心结论是:AI 负责生成可能性,人类负责做最终决策,驾驭错误成为 AI 时代生存与发展的关键能力。

2025-12-21 18:14:02 21826 73

大模型是如何工作的?从原理到通义生态的落地实践

大模型是如何工作的?从原理到通义生态的落地实践

2025-12-27

赢得签约战:用动态规划优化棒球自由球员选择策略

假设你是一支棒球大联盟球队的总经理。在寒季休季期间,你需要签入一些自由球员。球队老板给你的预算为X XX美元,你可以使用少于X XX美元来签入球员。但如果超支,球队老板就会解雇你。   你正在考虑在N NN个不同位置签入球员,在每个位置上,有P PP个该位置的自由球员供你选择。由于你不希望任何位置过于臃肿,因此每个位置最多签入一名球员(如果在某个特定位置上你没有签入任何球员,则意味着计划继续使用现用球员)。   为了确定一名球员的价值,你决定使用一种称为“VORP”或称为“球员替换价值”(Value Over Replacement Player)的统计评价指标(sabermetric)。球员的VORP值越高,其价值越高。但VORP值高的球员的签约费用并不一定比VORP值低的球员高,因此还有球员价值之外的因素影响签约费用。   对每个可选择的自由球员,你知道他的三方面信息:   • 他打哪个位置   • 他的签约费用   • 他的VORP   设计一个球员选择算法,使得总签约费用不超过X XX美元,而球员的总VORP值最大。

2024-08-03

BeanFactory内部解析:Spring框架的心脏如何运作

BeanFactory 是 Spring 框架中的一个核心接口,用于管理应用程序中的对象(也称为 bean)。它提供了一种将应用程序组件(如服务、数据源、控制器等)解耦并配置到应用程序中的方式。 总的来说,可以初步理解BeanFactory 为 Spring 框架中负责管理 bean 对象的核心组件,它通过 IoC 容器、延迟加载、依赖注入和作用域管理等机制,实现了对象之间的解耦和灵活配置,从而提高了应用程序的可维护性、可测试性和可扩展性。 Bean 的作用域管理: BeanFactory 支持不同的 bean 作用域,如 singleton、prototype、request、session 等。通过配置不同的作用域,可以控制 bean 对象的生命周期,并确保在不同的作用域下能够正确地管理 bean 对象的创建和销毁。 Bean 定义管理: BeanFactory 负责管理应用程序中的所有 bean 定义。这些 bean 定义通常是通过 XML 文件、注解或 Java 代码进行配置的。BeanFactory 负责解析这些配置信息,并在需要时实例化相应的 bean 对象。

2024-08-03

解读InnoDB数据库索引页与数据行的紧密关联

快速了解索引页结构和数据行的直接关系。前提知识如下: 数据行格式内容分析 探究InnoDB Compact行格式背后-CSDN博客 数据行头信息各个属性探究 解析MYSQL行头信息数据行格式分析_jdk 协程-CSDN博客 解析数据行内部单向链表策略 数据库记录行在页内查询探索分析 在InnoDB存储引擎的世界里,数据存储和管理就像是一座繁忙而有序的城市。在这座城市中,每一块16KB大小的土地都被称为一个“页”(Page),而这些页是城市基础设施的核心,其主角就是“索引页”(INDEX页),这些页专门用于存储我们表中的实际记录数据,因此也被称为“数据页”(Data Page)。 目录 一、快速走进索引页结构 (一)整体展示说明 (二)内容说明 File Header(文件头部) Page Header(页面头部) Infimum + Supremum(最小记录和最大记录) User Records(用户记录) Free Space(空闲空间) Page Directory(页面目录) File Trailer(文件尾部) 二、索引页与记录行的简单关系说明

2024-08-03

存储选型实战:用真实案例教你如何做出最佳存储决策

存储选型决策案例模板是一种用于指导组织或个人在选择适合其需求的存储解决方案时所采取的方法和过程的框架。通常包括背景信息、需求分析、候选解决方案、技术评估、成本分析、风险评估、决策依据、决策过程、实施计划、监测与评估等。 存储选型决策案例模板是一种有助于组织或个人更有效地选择适合其需求的存储解决方案的工具。它通过提供结构和透明度,帮助确保决策是基于充分的信息和综合的分析,从而降低了不明智的决策风险。 提醒:依然是模版,所以也可以应用与其他选型决策! 我们提炼主要信息给出其模版。 前置声明 一、需求分析 (一)技术需求 (二)非技术需求 二、存储调研 三、选型决策 (一)决策明细表 (二)决策汇总表 (三)决策结论 前置声明 一、需求分析 (一)技术需求 (二)非技术需求 二、存储调研 三、选型决策 (一)决策明细表 (二)决策汇总表 (三)决策结论 前置声明 一、需求分析 (一)技术需求 (二)非技术需求 二、存储调研 三、选型决策 (一)决策明细表 (二)决策汇总表 (三)决策结论

2024-08-03

揭秘大模型的世界:初步了解人工智能的核心技术

大模型(Large Models)并没有一个官方的统一定义,因为它通常是一个相对的概念,其大小会根据时间、技术和领域的发展而变化。大模型通常指的是深度学习中具有大量参数和计算资源需求的神经网络模型。这些模型在不同的上下文中可能有不同的大小阈值。 例如,对于自然语言处理(NLP)领域,大模型可能指的是包含数十亿到千亿参数的模型,如GPT-3、GPT-4等。对于计算机视觉领域,大模型可能是拥有数亿参数的深度卷积神经网络,如ResNet-152。 在深度学习领域,随着技术的进步,大模型的规模不断扩大,以提高模型的性能。因此,官方定义可能难以固定,但通常可以根据模型的参数数量、计算资源需求和任务性能来判断一个模型是否被称为"大模型"。 重要的是,大模型通常需要大量的计算资源和大规模的数据进行训练,因此在使用它们时需要仔细考虑资源和性能的平衡。

2024-08-03

自动状态管理革命:优化业务流程的智能解决方案

自动流转一般都是一个很大的处理系统,其中包含的处理内容是非常庞大的。在实际业务中,自动化状态流转可以大幅度提升工作效率和系统的响应速度。这种处理系统涉及到多个业务流程、状态管理以及相应的调度策略。开发这样的系统需要深入理解业务需求,并结合实际的技术架构来设计和实现。 在构建一个智能化状态流转处理模块时,我们首先需要明确业务流程的各个状态及其之间的转换规则。这些状态转换通常是基于特定的事件或条件触发的,因此,设计时需要考虑到如何有效捕捉这些触发条件,并在状态发生变化时进行相应的处理。模块的核心在于确保状态流转的准确性和实时性,同时保持系统的高可用性和稳定性。 在这篇文章中,我将提供一个简单的示例,展示如何构建一个自动状态流转处理模块的代码示例。这个示例将涵盖如何定义状态、如何处理状态转换以及如何管理状态流转过程中的事件和异常。需要注意的是,实际的业务场景可能会更加复杂,因此,示例中的代码仅作为一种基本的实现思路,具体的系统设计还需要根据实际业务需求进行调整和优化。 总之,自动化状态流转处理模块的开发是一个综合性的工程,需要开发者具备良好的系统设计能力和对业务流程的深刻理解。

2024-08-03

文档规范的终极指南:大型项目开发中必备的设计文档标准

产品经理通常会在产品开发过程中编写和使用不同层次的文档来指导产品的设计、开发和推广。这些文档的三个主要层次分别是BRD(业务需求文档),MRD(市场需求文档)和PRD(产品需求文档)。该部分应该直接将对应的相关文档url进行展示和做简要说明。 文档类型 说明 主要信息 BRD 商业需求文档 项目背景(产品介绍)、市场分析、团队、产品路线、财务计划、竞争对手分析 等 MRD 市场需求文档 目标市场分析(目标、规模、特征、趋势)、目标用户分析(用户描述、用户使用场景、用户分类统计、核心用户、用户分类分析、竞争对手分析 、产品需求概况(定位、前景)) PRD 产品需求文档 详细功能说明(功能清单、优先级、功能目的、功能详细说明)、业务流程(业务流程、用例)、业务规则、界面原型(界面流程、界面原型)、数据要求(输入输出、极限范围、数据格式等)

2024-08-03

从ES的JVM配置起步思考JVM常见参数优化

Java 8目前仍然是许多企业中主要使用的版本之一,尤其是对于比较保守的公司。在过去,CMS (Concurrent Mark-Sweep) 垃圾回收器在Java 8中是一种常见选择,因为它在某些场景下能够提供较好的性能。 然而,随着Java版本的不断更新,一些旧的特性和组件被淘汰或替代,比如CMS。Java 14中正式废弃了CMS,而新的垃圾回收器,如ZGC和G1,逐渐成为了主流选择。ZGC和G1在处理大内存堆和低停顿时间方面表现出色,适用于现代应用程序的需求。 另外,自Java 9以后,Java的发布模式也发生了变化,从长期支持(LTS)版本切换到了更频繁的发布,大约每六个月发布一次。Java 8和Java 11是目前支持的LTS版本,它们提供了更长时间的支持和维护,适合希望保持稳定性和兼容性的企业和组织使用。 关于JVM相关的优化和配置我们之前提到过很多基本的知识内容,简单进行回顾一下,今天我们就JVM常见优化参数为基本内容再次重新来说(主要从ES的JVM配置来强化理解)。

2024-08-03

互联网企业工程级复杂缓存设计

互联网企业工程级复杂缓存设计

2024-07-31

没有找到关于“Graph 模型在长对话场景稳定性”的系统评估数据

2025-12-04

任务切分策略依赖提示工程,是否可能引入规划器优化?

2025-12-04

目前的 Retry 机制似乎是静态规则,能否基于反馈自演化?

2025-12-04

LangGraph 是否支持可验证的 Agent Policy Alignment?

2025-12-04

多模态 Node 之间的数据 Schema 缺乏统一标准是否会限制生态扩展?

2025-12-04

LangGraph 是否支持 Memory 层的时间感知(Temporal Memory)?

2025-12-04

长程任务中 Graph 膨胀问题是否存在自动压缩策略?

2025-12-04

RAG 节点是否能成为 Graph Routing 的直接决策信号?

2025-12-04

LangGraph 在长链任务中如何衡量 Step 复杂度 vs Token 成本?

2025-12-04

Graph Execution Trace 粒度不足是否会限制 Root-Cause Debug?

2025-12-04

多 Agent 写共享内存同一 Key 时,LangGraph 是否提供一致性保证?

2025-12-03

Graph 状态在长链任务中如何保证可再现性?

2025-12-03

LangGraph 中 Memory 是否会随执行轮次逐步污染推理?

2025-12-03

如何在交互界面上呈现模型的不确定性(例如步骤置信、事实来源、可能失败的概率),以便提高用户的判断效率而不增加认知负担?

2025-12-03

对于需要边缘/本地部署的场景,如何在有限算力下实现“近似RAG”或“轻量化长期记忆”方案,使得离线模型仍能保持较高事实性与低延迟?

2025-12-03

当模型给出建议(例如法律文本修改或医学建议)时,如何量化“建议的可采纳性”(actionability)而不仅是语法/可读性?是否能提出界定 actionability 的客观指标并在用户研究中验证?

2025-12-03

在对含敏感/法律/医疗信息的自动生成内容进行“责任归属”时,是否存在一种可落地的策略,使模型或服务提供方能在发生错误/误导时承担合理责任而非无限免责?

2025-12-03

在保证长上下文语义连贯的同时,如何设计高效的“动态上下文裁剪”策略(既保留关键历史又不爆显存),并给出该策略比简单 sliding-window 或 recency-based 策略的严格改进证明或实验?

2025-12-03

是否能提出一个工程化的“可追溯来源标注机制”( provenance)

2025-12-03

在评估“长期记忆正确性”时,如何设计基准使其同时考察记忆插入、检索有效性和更新后的一致性(即写入后并不会导致旧知被错误覆盖)?

2025-12-01

能否提供一个通用的、可扩展的评测框架来衡量 Agent 在流程执行中的“步骤正确率/回滚率/资源消耗”?

2025-12-01

在多模态场景(文本+图像+短视频+音频)中,如何保证跨模态推理的语义一致性?有没有一种可量化的“跨模态一致性分数”供模型在生成时优化?

2025-12-01

如何在多模态推理中处理“模态间信息冲突”——例如图像提示和文本上下文互相矛盾时,模型应如何判定证据优先级并解释其选择?

2025-12-01

是否存在可信的在线微调(online fine-tuning)范式,能够在用户反馈到来时增量更新模型行为而不导致灾难性遗忘或性能偏移?

2025-12-01

当 Agent 面临“不可预见的外部错误”(网络失败、API 限制、数据格式异常)时,是否有稳健的错误恢复策略模板?如何在不中断任务语义的前提下“优雅降级”并向用户透明报告?

2025-12-01

如何在保持模型推理稳定性的同时实现“可插拔的长期记忆层”(persistent memory),支持:高频知识增量写入、低延迟检索以及版本化回滚?

2025-12-01

在复杂任务(多工具、多调用、需状态管理)下,如何设计一个可证明稳定的“工具调用调度器”(tool scheduler)——既能避免无限循环调用,也能保证工具组合的完备性与效率?

2025-12-01

大模型在多步推理中输出路径不透明,难以确定正确答案是否因偶然推得,而缺乏稳定复现机制

2025-12-01

能否提出一种端到端可微的“事实一致性校验器”架构(可插拔到大模型生成流程中),并证明其相比单次后处理 fact-check 的优势?

2025-12-01

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除