- 博客(327)
- 收藏
- 关注
原创 微服务与领域驱动设计:构建高内聚低耦合系统的指南
领域驱动设计DDD是一种设计思想,它可以同时指导中台业务建模和微服务设计(中台本质是业务模型,微服务是业务模型的系统落地),领域驱动设计强调领域模型和微服务设计的一体性,先有领域模型然后才有微服务,而不是脱离领域模型来谈微服务设计。
2020-03-26 18:34:46
1765684
1997
原创 深入解析Spring Cloud Config:多样配置中心的实现与高可用策略
这篇文章探讨了配置中心的重要性及其在分布式系统中的应用,特别关注Spring Cloud Config。文章首先介绍了配置中心的由来、功能及选择标准,然后详细阐述了Spring Cloud Config的基本实现方法,包括结合Git、关系型数据库(MySQL)和非关系型数据库(MongoDB)的方案。此外,还讨论了配置中心的高可用性、客户端自动刷新机制及安全认证等扩展功能。最后,文章对比了Spring Cloud Config与Apollo的特性,强调Apollo在企业级应用中的优势。
2019-02-14 14:36:20
1682818
2707
原创 深入理解服务发现与注册:从单体架构到微服务时代的演进
本文首先回顾了服务发现与注册技术在不同系统架构时代的应用演进,分析了单体架构、SOA架构和现代微服务架构下的实现方式和挑战。随后,文章详细介绍了服务发现与注册的技术选型,并深入探讨了Eureka作为一种基于AP原则的服务注册中心的设计理念,包括其如何解决服务实例注册、剔除和信息一致性问题。接着,本文分析了Eureka的基本架构和细化结构,包括注册中心服务器、服务提供者和消费者的角色和功能。最后,文章讨论了Eureka的高可用方案、区域亲和性以及参数调优与监控策略,帮助读者更好地理解和应用这一关键技术组件来构
2019-02-14 14:28:33
1687308
1426
原创 从 HTTP Hack 到 IM 基础设施:长轮询技术原理与实践解析
本文系统解析了 Web 即时通信中长轮询(Long Polling)的原理与工程实践。从 HTTP 请求-响应模型的天然局限出发,介绍了短轮询的瓶颈与长轮询的设计优化,包括异步 Servlet、超时机制、Send/Polling 接口模型,以及服务解耦、代理服务与缓存的应用。文章结合大象通信服务的真实架构,详细说明了消息收发、Token 管理和性能优化策略,并对长轮询与 WebSocket、HTTP/3、WebTransport 等新技术进行了工程视角的对比。
2026-01-23 10:42:54
998
2
原创 QLExpress 在高并发场景下的多线程安全性实践与原理分析
本文围绕 QLExpress 在多线程环境下的使用展开,基于真实并发演示代码,从基础并发、高并发压力、上下文隔离、长时间运行以及资源竞争等多个维度,对其线程安全性和稳定性进行了系统验证。文章不仅分析了 ExpressRunner 与 Context 的线程模型设计,还结合自定义函数实现,深入讨论了并发场景下的安全边界与常见误区。通过实验结果与工程经验总结,本文给出了一套适用于生产环境的 QLExpress 多线程使用最佳实践,为在高并发系统中安全引入表达式引擎提供参考。
2026-01-23 10:42:38
497
1
原创 商品供给域完整事件风暴(Event Storming)清单
本文基于 Event Storming 方法,对商品供给域进行了系统化、全景式的事件拆解与建模说明。通过引入 Big Picture 事件全景地图,明确了商品、门店、价格、库存、质量、标签等子域在时间轴上的协作关系,梳理了核心域、支撑域与通用域的关键领域事件及其边界职责。文章进一步给出了统一的事件设计规范与实践建议,说明如何将该清单用于 Event Storming 工作坊与架构设计中,帮助团队将隐性的业务规则显性化,降低系统耦合度,为商品供给体系的长期演进与事件驱动架构落地提供清晰、可复用的参考框架。
2026-01-22 11:19:11
797
4
原创 QLExpress复杂数据结构处理实践:企业级规则引擎应用
这篇文章围绕 QLExpress 在复杂数据结构处理上的应用 展开,结合电商订单计算场景,系统讲解了如何处理嵌套对象、集合聚合、动态条件过滤和多层级业务逻辑计算。文章通过完整的 Java 示例展示了自定义函数的扩展方式,如 sum、filter、exists 等,使业务规则表达更直观、可维护。结合 VIP 折扣、运费计算和积分策略等实际业务案例,阐述了 QLExpress 在企业级应用中提升灵活性、可配置性和性能优化的价值。文章还提供了性能优化建议与参考资料,为构建高效规则引擎提供了完整指南。
2026-01-22 11:18:57
1136
4
原创 掌握 QLExpress 自定义操作符:从入门到高级应用
本文介绍了如何在 QLExpress 中自定义操作符,通过封装模糊匹配、向上取整除法、集合交集、正则验证和数值范围判断等常用逻辑,使规则表达式更简洁可复用。文中提供了完整 Java 示例,并分享了设计原则与应用场景,为规则引擎扩展提供实用参考。
2026-01-21 09:06:56
2314
5
原创 QLExpress性能优化全解析:从表达式预编译到内存管理
本文围绕 QLExpress 在高频计算与批量规则执行场景下的性能瓶颈,结合完整的 Java 实战代码,系统讲解了表达式预编译、结果缓存、上下文重用、函数实现优化、批处理以及内存管理等核心优化策略。通过对比实验与数据分析,直观展示了各类优化手段对执行效率与资源消耗的改善效果,为在实际业务系统中构建高性能、可扩展的 QLExpress 规则引擎提供了清晰可落地的实践参考。
2026-01-21 09:06:35
2266
3
原创 解析 QLExpress 表达式预编译与缓存机制:Java 性能优化实践
本文围绕 QLExpress 表达式引擎,系统讲解了预编译与缓存策略在 Java 高并发计算场景中的应用。通过 InstructionSet 预编译和 ConcurrentHashMap 缓存,实现了表达式重复执行的性能优化,并统计命中率和未命中率。文中提供完整示例,包括自定义函数注册、缓存策略设计及性能基准测试,结果表明缓存命中可显著提升执行速度,批量执行性能提升可达数倍。文章还总结了缓存容量控制、LRU策略、分级缓存和监控实践,为企业级动态规则计算提供可落地的优化方案。
2026-01-20 08:44:26
2815
4
原创 QLExpress变量与数据类型:表达式世界的基础单元
本文通过一个完整的 QLExpress 示例工程,系统讲解了 QLExpress 中变量与数据类型的设计理念与工程实践方式。内容涵盖基本数值类型、BigDecimal 精度计算、布尔逻辑、字符串与日期处理、变量赋值与作用域、显式类型转换、null 值防御,以及数组与 POJO 对象的访问机制。文章重点不在语法罗列,而在于揭示 QLExpress 作为“受限 Java 运行时”的类型哲学,并给出可直接用于生产环境的工程建议,帮助读者构建稳定、可预测、可维护的规则表达体系。
2026-01-20 08:44:04
2840
3
原创 从表达式到规则程序:QLExpress 控制流程机制与工程化实践解析
本文系统讲解了 QLExpress 中的控制流程机制,包括 if / else 条件分支、for / while 循环、break / continue 流程控制及其嵌套组合方式。通过完整可运行示例,展示了 QLExpress 如何从表达式计算升级为具备过程化执行能力的规则引擎,并结合规则引擎视角分析其在业务决策、批量处理与复杂规则建模中的工程价值。
2026-01-19 13:31:21
2812
2
原创 QLExpress 上下文变量解析:从参数容器到规则运行时世界模型
QLExpress 作为一款面向 Java 生态的高性能规则表达式引擎,其上下文(Context)机制是连接“规则逻辑”与“真实业务世界”的关键枢纽。本文通过一套完整、可运行的示例代码,系统性地剖析了 QLExpress 上下文变量的设计语义与工程价值,从基础变量读写、上下文可变性、复杂对象承载,到作用域、状态共享与自定义扩展,逐步揭示 Context 如何从一个简单的参数容器演进为规则运行时的“世界模型”。本文适合希望在规则引擎、决策引擎、配置化业务系统中深入使用 QLExpress 的技术人员阅读。
2026-01-19 13:31:01
3191
2
原创 从入门到可落地:QLExpress 基本语法体系化学习与实践指南
本文系统梳理了阿里巴巴开源规则引擎 QLExpress 的核心能力与工程实践路径。从整体架构与执行模型入手,说明表达式在规则引擎中的运行机制,帮助读者建立对 QLExpress 的全局认知。随后围绕变量与数据类型、操作符、控制流程、内置函数、字符串操作以及数组与集合等关键能力,结合典型示例,解析其在业务规则表达中的优势与边界。文章重点讲解了 上下文变量(Context) 这一核心概念,深入分析其在规则执行中的作用,包括运行时数据承载、变量作用域、状态共享与规则副作用管理等工程问题。
2026-01-18 11:14:15
3493
5
原创 QLExpress 数组与集合解析:语义模型、规则表达与工程实践
本文系统解析了 QLExpress 对数组与集合(List)的支持能力,围绕其语义模型、操作方式与工程实践展开说明。通过完整、可运行的示例代码,展示了数组与集合在遍历、统计、搜索、过滤等规则场景中的典型用法,并总结了在规则引擎中进行批量数据处理的设计原则与最佳实践。文章旨在帮助读者在不引入额外抽象成本的前提下,构建清晰、可维护、可演进的规则表达逻辑。
2026-01-18 11:13:48
3891
5
原创 Java+Python双语言开发AI工具全景分析与选型指南
文章重点对比了 JetBrains Junie、GitHub Copilot X、百度文心快码(Comate)等代表性工具,并结合不同开发角色、预算与应用场景,构建了可落地的选型决策矩阵。结论表明:在工程复杂度较高的 Java 场景中,具备项目级上下文理解能力的 IDE 原生工具优势明显;而生态型与国产工具则在跨 IDE、云原生或本土化场景中各具价值。本文旨在为 Java + Python 工程师及技术负责人提供一份 理性、可参考的 AI 编码工具选型指南。
2026-01-17 10:07:19
4069
5
原创 AI 编码工具全景分析与选型决策指南——从「代码补全」到「工程级智能体」的范式跃迁
本文基于 GitHub Octoverse、Stack Overflow Developer Survey 等公开数据,从技术演进、工程实践与组织治理三个维度,系统分析了 AI 编码工具从“补全器”到“工程级智能体”的范式跃迁路径。文章重点讨论了 AI 在 CI/CD、自动化测试、文档与知识管理、跨语言协同以及工程自治中的实际能力与现实约束,并给出了面向企业与团队的选型决策框架。结论指出,AI 的真正价值不在于替代工程师,而在于与人类专业经验形成协同,通过可控、渐进的方式提升工程效率、质量与组织治理能力。
2026-01-17 09:30:26
4408
3
原创 QLExpress 字符串能力解析:机制、用法与工程实践
QLExpress 作为一款深度融入 Java 生态的高性能表达式引擎,其字符串能力并非附属特性,而是直接构建在执行模型与表达式语义之上的核心能力。本文系统梳理了 QLExpress 的字符串模型与语义定位,结合大量可运行示例,深入讲解字符串在拼接、格式化、校验、处理与统计等场景下的典型用法,并从工程实践角度总结了适合与不适合交由规则层处理的字符串逻辑边界,帮助读者在真实业务系统中更稳定、高效地使用 QLExpress 承载字符串相关规则。
2026-01-16 00:45:43
4522
5
原创 商品供给域的工程化简要设计考量
本文以商品供给域为背景,从领域优先的视角出发,系统梳理了技术选型原则、核心与支撑子域的数据模型设计,以及通用域的工程化实践。文章重点通过 ProductPublished 领域事件,阐明事件驱动架构在商品、价格、库存等子域协作中的解耦价值,说明领域事件如何支撑最终一致性与系统长期演进,为构建稳定、可扩展的商品供给架构提供实践参考。
2026-01-16 00:45:09
4524
3
原创 QLExpress 内置函数体系:让规则不再演变为脚本化业务代码
在规则引擎落地过程中,函数能力的设计直接决定了规则系统是否会走向“脚本化、不可维护”的失控状态。QLExpress 并未自造一套封闭的 DSL 函数体系,而是选择以 Java 原生能力为核心,构建了一套高度可预测、低学习成本的内置函数机制。本文通过完整可运行示例,系统性梳理了 QLExpress 在数学计算、字符串处理、日期时间、类型转换与集合操作等方面的内置函数设计理念与工程价值,并结合规则建模视角,说明其如何有效约束规则复杂度、提升稳定性与可维护性。
2026-01-15 00:02:10
5804
3
原创 QLExpress基本操作符:表达式能力的核心引擎
本文围绕 QLExpress 的操作符体系展开,通过完整示例代码系统演示了算术、比较、逻辑及三元操作符在规则引擎中的实际行为与工程语义。文章不仅验证了 QLExpress 在类型处理、短路求值和 BigDecimal 精度计算等方面的设计特性,还从可维护性和规则建模角度,总结了操作符在业务规则表达中的最佳实践,帮助读者构建更稳定、可读、可演进的规则系统。
2026-01-15 00:01:34
5223
1
原创 QLExpress 底层技术细节与实现机制简要分析
本文围绕阿里巴巴开源规则引擎 QLExpress,从工程实践视角对其设计定位、底层执行机制、类型与表达式处理、扩展能力、性能优化与安全沙箱等核心内容进行了系统性解析。文章结合电商、风控、营销等真实业务场景,深入说明 QLExpress 如何在灵活性、性能与可治理性之间取得平衡,并通过与 Groovy、Aviator、Drools 等方案的对比,明确其适用边界与选型原则。整体旨在帮助工程师和架构师正确理解规则引擎的工程价值,在高频变化的业务场景中更高效、可控地落地规则驱动架构。
2026-01-14 09:21:47
5640
5
原创 商品供给域的领域化拆解与系统化设计
本文以领域驱动设计(DDD)为方法论,对“商品供给域”这一核心业务域进行系统性拆解,从整体视角将其划分为核心域、支撑域与通用域,并重点围绕门店商品、总店商品、价格、库存等关键子域,深入分析其业务定位、核心上下文与设计原则。同时,结合质量、标签、日志与事件通知等支撑与通用能力,探讨商品供给体系在架构层面的协同方式与长期演进路径。文章旨在为构建一个边界清晰、可治理、可扩展的商品供给架构提供一套可落地的领域建模与设计参考。
2026-01-14 09:21:23
5283
5
原创 探索未来智能的钥匙——ACA大模型工程师认证专栏导读
通过 ACA 大模型工程师认证课程,我们将全面掌握大模型技术、应用和工程方法,从基础知识到前沿技术,从文本分析到智能体系统,从微调方法到风险治理,形成完整的能力体系。在实际工作与学习中,学员能够充分发挥大模型的潜力,提升效率、创造价值。无论你是零基础入门者,还是希望将大模型技术落地应用的职场人士,ACA大模型工程师认证都将为你提供一条清晰的学习路径,助你快速掌握大模型的核心方法与工程实践。
2026-01-13 00:15:18
5992
4
原创 生成式大模型的风险与治理:从技术隐患到合规落地的系统性分析
本文围绕大模型落地过程中面临的个人信息保护、内容安全、模型安全与知识产权等核心风险,结合国内外真实案例,对风险成因进行系统分析。在此基础上,从个人信息合规、内容安全保障、模型安全防控和知识产权保护四个维度,梳理当前主流且具备可落地性的风险治理路径,并结合《生成式人工智能服务管理暂行办法》,探讨大模型应用备案与企业合规实践。文章指出,大模型风险治理是一项贯穿数据、模型、应用与制度全生命周期的系统工程,需以技术与治理协同推进,保障生成式人工智能的安全、合规与可持续发展。
2026-01-13 00:02:09
5980
2
原创 多模态大模型、混合专家模型与云端协同架构
本文系统梳理了现代人工智能中的三大核心技术方向:多模态大模型、混合专家模型(MoE)与大小模型云端协同。文章首先阐述多模态大模型通过统一语义空间、对比学习和多模态融合,实现跨文本、图像、音频等数据的智能理解与生成;随后介绍 MoE 架构利用稀疏激活和门控网络,实现大模型容量扩展与任务专攻能力;最后分析大小模型云端协同,通过云端大模型与边缘小模型协作,兼顾计算效率、低延迟与隐私保护。文章总结了各技术的优势、应用场景及研究进展,为未来智能系统设计提供参考。
2026-01-12 08:50:02
6337
4
原创 多智能体(Multi-Agent)系统在人工智能中的应用与发展
本文系统介绍了 多智能体系统(Multi-Agent System, MAS) 的概念、实现方法与应用案例,重点介绍了 MetaGPT、AgentScope、Camel AI、AutoGen、AgentVerse 和 斯坦福小镇 等开源项目与平台,详细阐述它们的架构、功能、部署方式和应用场景。文章还分析了多智能体系统的核心技术,包括任务分工、智能体间通信、推理与决策机制,并讨论了其优势、应用领域及未来发展方向,强调多智能体系统在协作智能和复杂任务解决中的关键作用。
2026-01-12 08:49:32
6243
3
原创 沉寂与重生:QLExpress4 的诞生与升级量化
QLExpress4 是阿里在规则引擎领域一次具有方向性意义的重构。它不再仅关注“能否执行规则”,而是围绕可解释性、可观测性与工程可控性,对解析引擎、执行模型和语法体系进行了系统升级。通过引入 Antlr4、表达式执行追踪、原生 JSON 支持以及更严格的安全策略,QLExpress4 显著提升了规则的可分析能力与长期演进价值。对于新系统而言,QLExpress4 已具备成为默认规则引擎的成熟度;对于存量系统,升级则是一项需要工程化评估的选择。
2026-01-11 11:40:45
6339
7
原创 基于 ModelScope-Agent 框架构建可落地的大模型 Agent 应用实践
本文系统介绍了 ModelScope-Agent 框架及其在大模型 Agent 应用中的实践。文章强调“Agent ≠ 更强的大模型”,解析其核心模块:推理核心、工具系统、执行调度和记忆管理。并详细说明框架在多模态内容生成、复合任务规划、多轮对话参数提取及基于检索问答中的应用,同时介绍已集成的工具生态及在线体验与本地运行方式。总结指出,ModelScope-Agent 提供可组合、可扩展的工程模板,为开发落地 Agent 应用提供高效路径。
2026-01-11 11:40:03
6758
3
原创 从大模型到 Agent:具备记忆与规划能力的智能体是如何工作的
本文从工程系统与认知结构的视角,系统梳理了大模型 Agent 的核心概念与关键能力演进路径。文章首先明确了 Agent 相较于传统大模型在交互方式与系统形态上的本质差异,随后重点分析了 Agent 的记忆机制(短期记忆与长期记忆)以及面向复杂任务的规划能力。在此基础上,文章深入介绍了 CoT、ToT、GoT 等推理范式如何推动大模型从线性推理走向搜索与结构化决策,并重点阐述了 ReAct 框架如何通过“推理—行动—反思”的闭环,将模型能力与真实环境交互有效结合。
2026-01-10 14:05:23
6702
19
原创 QLExpress :一款从内部工具到开源社区核心的脚本引擎
QLExpress 是一款源自阿里巴巴内部的轻量级 Java 规则与表达式执行引擎,成功解决了促销、风控、定价等场景中规则频繁变化、维护成本高的问题,并在 2012 年对外开源,逐步发展为被广泛采用的工程型规则引擎。本文沿着时间线,系统回顾了 QLExpress 从内部工具、社区开源、长期稳定应用,到十年沉寂后以 QLExpress4 形态完成架构重写的全过程。同时结合 AI 时代背景,分析了规则引擎在安全执行、可观测性与工程可控性方面依然不可替代的价值,总结其对企业级开源项目与规则系统演进的启示。
2026-01-10 13:58:51
6657
16
原创 知晓大模型微调:从业务动机到 LoRA 等高效微调方法
本文围绕大模型微调的实际应用展开,系统介绍了微调的核心价值与局限,强调其并非“银弹”,而是一项需要在数据质量、合规风险、算力成本与团队能力之间综合权衡的工程决策。文章重点解析了以 LoRA 为代表的参数高效微调方法,从原理、工程实现到实践优势,说明其为何成为当前最主流的微调方案,并为业务场景下的模型选型与投入决策提供了可落地的参考框架。
2026-01-09 08:53:05
7435
21
原创 QLExpress 企业级动态规则引擎实践:重塑电商促销系统的可配置化计算中枢
在复杂电商促销场景中,系统的难点并不在于单个折扣算法,而在于多规则之间的执行顺序、组合关系及频繁变化的业务需求。传统基于硬编码或策略堆叠的实现方式,往往导致规则失控、系统难以演进。本文基于一个真实的促销计算模型,系统性地介绍了如何使用 QLExpress 构建轻量级、工程化的规则引擎方案。通过引入“规则编排层”,将规则顺序与业务算法解耦,使促销规则具备可配置、可治理、可演进的能力,并结合架构设计、核心实现、复杂场景验证及性能分析,论证该方案在长期维护与业务扩展中的实际价值。
2026-01-09 08:49:51
7686
17
原创 快速了解 8 种常见的大模型微调方法(PEFT)
本文系统梳理了当前大语言模型微调的主流方法,重点介绍了八种参数高效微调策略:LoRA、QLoRA、Adapter Tuning、Prefix Tuning、Prompt Tuning、P-Tuning、P-Tuning v2 及 LoRA + MoE。文章从原理、操作流程、适用场景与工程实践角度,对每种方法进行了解读,并比较了它们在显存占用、任务适配性、灵活性与性能上的差异。通过对比与总结,本文为从业者提供了一套完整的微调认知框架,帮助在模型规模、任务复杂度和资源约束之间做出最优选择。
2026-01-08 09:08:21
7861
17
原创 Self‑RAG:让大模型“多想一步”的自反思检索增强生成机制
本文系统介绍了 Self‑RAG框架,其核心在于引入自我反思机制,使大型语言模型在生成前后能够动态评估检索需求与输出质量。通过按需检索、反思令牌和生成-批判一体化流程,Self‑RAG 显著提升了模型在开放域问答、事实验证和长文本生成任务中的准确性与一致性,同时减少幻觉与错误输出。文章还探讨了该机制的实现挑战、系统复杂性及在法律、金融、医疗等高可靠性场景中的应用前景,为大模型在专业任务中的可信生成提供了可行路径。
2026-01-08 08:24:55
8017
16
原创 从多种数据源中获取资料:推进 RAG 向结构化与图数据检索的融合
本文介绍了如何将结构化数据库和知识图谱纳入 RAG(Retrieval‑Augmented Generation)体系,提升智能问答和决策支持能力,涵盖 NL2SQL 与 Structured RAG、Graph-RAG 与图知识库构建,并重点分析了 Schema 理解、多源融合及查询安全等关键挑战,同时展望了跨结构化数据检索的发展趋势。
2026-01-07 08:41:33
8267
16
原创 Corrective Retrieval Augmented Generation(CRAG):构建更可靠的信息抽取与生成系统
本文围绕 Corrective Retrieval Augmented Generation(CRAG)展开,系统介绍了其提出背景、核心思想与整体架构。文章重点阐述了 CRAG 如何在传统 RAG 检索结果相关性不足的情况下,通过检索质量评估、知识片段提炼以及互联网补充搜索等机制,对信息获取路径进行纠正与增强,从而提升生成结果的准确性与覆盖范围。同时结合工程实现策略与典型应用场景,分析了 CRAG 在实际系统中的价值与优势,为构建更可靠、更具鲁棒性的智能问答与知识生成系统提供了实践参考。
2026-01-07 08:35:48
8607
16
原创 生产级提升 RAG 检索增强策略体系的关键策略
本文系统梳理了RAG在生产级问答系统中的关键优化策略,包括问题补全、多路召回与融合、Step‑Back 抽象理解、问题分解以及假设驱动检索(HyDE)。文章详细分析了每种策略的设计思路、工程实现及适用场景,强调通过自动补全用户问题、扩展检索视角、抽象宏观语义和生成假设答案,可以显著提升检索召回覆盖率、答案准确性与系统鲁棒性。最终指出,这些策略既可独立应用,也可组合部署,是 RAG 从“能用”走向“可规模化、生产级智能应用”的核心能力。
2026-01-06 08:52:56
8893
15
原创 持续改进 RAG 应用效果:从“能用”到“好用”的系统化方法
本文系统梳理了企业级 RAG(检索增强生成)系统的持续优化策略,强调从评测体系建设入手,通过提升检索质量、优化文本切分与语义检索、改进问题理解、多源信息融合以及引入自我反思机制等方法,提升系统的准确性、稳定性和专业性。文章指出,RAG 的优化是一个持续演进的工程过程,需在数据质量、检索策略、生成模型能力与反馈机制等多维度协同推进,以实现从“能用”到“好用、可信、可扩展”的目标。
2026-01-06 08:36:36
8813
17
原创 快速读懂 RAG 的原理、实现与工程实践
在大语言模型广泛应用的背景下,模型在专业知识、私域数据与实时信息场景中仍面临准确性与幻觉问题。检索增强生成(RAG)通过将信息检索与文本生成相结合,成为当前大模型工程化落地的核心技术范式之一。本文以“导游助理”为类比,系统阐述 RAG 的基本形态与本质思想,从工程视角拆解其索引构建、检索与生成流程,并结合阿里云 AI 助理的真实案例说明 RAG 在企业级场景中的应用价值。最后,通过一个无需编写代码的私域知识问答实验,完整展示 RAG 从概念到系统落地的实践路径,为构建可控、可靠的大模型应用提供参考。
2026-01-05 11:59:55
9563
21
赢得签约战:用动态规划优化棒球自由球员选择策略
2024-08-03
BeanFactory内部解析:Spring框架的心脏如何运作
2024-08-03
解读InnoDB数据库索引页与数据行的紧密关联
2024-08-03
存储选型实战:用真实案例教你如何做出最佳存储决策
2024-08-03
揭秘大模型的世界:初步了解人工智能的核心技术
2024-08-03
自动状态管理革命:优化业务流程的智能解决方案
2024-08-03
文档规范的终极指南:大型项目开发中必备的设计文档标准
2024-08-03
从ES的JVM配置起步思考JVM常见参数优化
2024-08-03
没有找到关于“Graph 模型在长对话场景稳定性”的系统评估数据
2025-12-04
任务切分策略依赖提示工程,是否可能引入规划器优化?
2025-12-04
目前的 Retry 机制似乎是静态规则,能否基于反馈自演化?
2025-12-04
LangGraph 是否支持可验证的 Agent Policy Alignment?
2025-12-04
多模态 Node 之间的数据 Schema 缺乏统一标准是否会限制生态扩展?
2025-12-04
长程任务中 Graph 膨胀问题是否存在自动压缩策略?
2025-12-04
RAG 节点是否能成为 Graph Routing 的直接决策信号?
2025-12-04
LangGraph 在长链任务中如何衡量 Step 复杂度 vs Token 成本?
2025-12-04
多 Agent 写共享内存同一 Key 时,LangGraph 是否提供一致性保证?
2025-12-03
Graph 状态在长链任务中如何保证可再现性?
2025-12-03
LangGraph 中 Memory 是否会随执行轮次逐步污染推理?
2025-12-03
当模型给出建议(例如法律文本修改或医学建议)时,如何量化“建议的可采纳性”(actionability)而不仅是语法/可读性?是否能提出界定 actionability 的客观指标并在用户研究中验证?
2025-12-03
是否能提出一个工程化的“可追溯来源标注机制”( provenance)
2025-12-03
大模型在多步推理中输出路径不透明,难以确定正确答案是否因偶然推得,而缺乏稳定复现机制
2025-12-01
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅