自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

曾经“等你生日那天”都遥远得像未来,如今却可欢愉的挥手说“下个十年见”

记录多年 Java 与架构实践,包括学习 Python、Go 的脚印,延伸产品设计与 AI 技术的探索实战。 沉淀经验、分享方法、记录成长,愿与你一道在技术长河中持续精进。

  • 博客(327)
  • 收藏
  • 关注

原创 微服务与领域驱动设计:构建高内聚低耦合系统的指南

领域驱动设计DDD是一种设计思想,它可以同时指导中台业务建模和微服务设计(中台本质是业务模型,微服务是业务模型的系统落地),领域驱动设计强调领域模型和微服务设计的一体性,先有领域模型然后才有微服务,而不是脱离领域模型来谈微服务设计。

2020-03-26 18:34:46 1765684 1997

原创 深入解析Spring Cloud Config:多样配置中心的实现与高可用策略

这篇文章探讨了配置中心的重要性及其在分布式系统中的应用,特别关注Spring Cloud Config。文章首先介绍了配置中心的由来、功能及选择标准,然后详细阐述了Spring Cloud Config的基本实现方法,包括结合Git、关系型数据库(MySQL)和非关系型数据库(MongoDB)的方案。此外,还讨论了配置中心的高可用性、客户端自动刷新机制及安全认证等扩展功能。最后,文章对比了Spring Cloud Config与Apollo的特性,强调Apollo在企业级应用中的优势。

2019-02-14 14:36:20 1682818 2707

原创 深入理解服务发现与注册:从单体架构到微服务时代的演进

本文首先回顾了服务发现与注册技术在不同系统架构时代的应用演进,分析了单体架构、SOA架构和现代微服务架构下的实现方式和挑战。随后,文章详细介绍了服务发现与注册的技术选型,并深入探讨了Eureka作为一种基于AP原则的服务注册中心的设计理念,包括其如何解决服务实例注册、剔除和信息一致性问题。接着,本文分析了Eureka的基本架构和细化结构,包括注册中心服务器、服务提供者和消费者的角色和功能。最后,文章讨论了Eureka的高可用方案、区域亲和性以及参数调优与监控策略,帮助读者更好地理解和应用这一关键技术组件来构

2019-02-14 14:28:33 1687308 1426

原创 从 HTTP Hack 到 IM 基础设施:长轮询技术原理与实践解析

本文系统解析了 Web 即时通信中长轮询(Long Polling)的原理与工程实践。从 HTTP 请求-响应模型的天然局限出发,介绍了短轮询的瓶颈与长轮询的设计优化,包括异步 Servlet、超时机制、Send/Polling 接口模型,以及服务解耦、代理服务与缓存的应用。文章结合大象通信服务的真实架构,详细说明了消息收发、Token 管理和性能优化策略,并对长轮询与 WebSocket、HTTP/3、WebTransport 等新技术进行了工程视角的对比。

2026-01-23 10:42:54 998 2

原创 QLExpress 在高并发场景下的多线程安全性实践与原理分析

本文围绕 QLExpress 在多线程环境下的使用展开,基于真实并发演示代码,从基础并发、高并发压力、上下文隔离、长时间运行以及资源竞争等多个维度,对其线程安全性和稳定性进行了系统验证。文章不仅分析了 ExpressRunner 与 Context 的线程模型设计,还结合自定义函数实现,深入讨论了并发场景下的安全边界与常见误区。通过实验结果与工程经验总结,本文给出了一套适用于生产环境的 QLExpress 多线程使用最佳实践,为在高并发系统中安全引入表达式引擎提供参考。

2026-01-23 10:42:38 497 1

原创 商品供给域完整事件风暴(Event Storming)清单

本文基于 Event Storming 方法,对商品供给域进行了系统化、全景式的事件拆解与建模说明。通过引入 Big Picture 事件全景地图,明确了商品、门店、价格、库存、质量、标签等子域在时间轴上的协作关系,梳理了核心域、支撑域与通用域的关键领域事件及其边界职责。文章进一步给出了统一的事件设计规范与实践建议,说明如何将该清单用于 Event Storming 工作坊与架构设计中,帮助团队将隐性的业务规则显性化,降低系统耦合度,为商品供给体系的长期演进与事件驱动架构落地提供清晰、可复用的参考框架。

2026-01-22 11:19:11 797 4

原创 QLExpress复杂数据结构处理实践:企业级规则引擎应用

这篇文章围绕 QLExpress 在复杂数据结构处理上的应用 展开,结合电商订单计算场景,系统讲解了如何处理嵌套对象、集合聚合、动态条件过滤和多层级业务逻辑计算。文章通过完整的 Java 示例展示了自定义函数的扩展方式,如 sum、filter、exists 等,使业务规则表达更直观、可维护。结合 VIP 折扣、运费计算和积分策略等实际业务案例,阐述了 QLExpress 在企业级应用中提升灵活性、可配置性和性能优化的价值。文章还提供了性能优化建议与参考资料,为构建高效规则引擎提供了完整指南。

2026-01-22 11:18:57 1136 4

原创 掌握 QLExpress 自定义操作符:从入门到高级应用

本文介绍了如何在 QLExpress 中自定义操作符,通过封装模糊匹配、向上取整除法、集合交集、正则验证和数值范围判断等常用逻辑,使规则表达式更简洁可复用。文中提供了完整 Java 示例,并分享了设计原则与应用场景,为规则引擎扩展提供实用参考。

2026-01-21 09:06:56 2314 5

原创 QLExpress性能优化全解析:从表达式预编译到内存管理

本文围绕 QLExpress 在高频计算与批量规则执行场景下的性能瓶颈,结合完整的 Java 实战代码,系统讲解了表达式预编译、结果缓存、上下文重用、函数实现优化、批处理以及内存管理等核心优化策略。通过对比实验与数据分析,直观展示了各类优化手段对执行效率与资源消耗的改善效果,为在实际业务系统中构建高性能、可扩展的 QLExpress 规则引擎提供了清晰可落地的实践参考。

2026-01-21 09:06:35 2266 3

原创 解析 QLExpress 表达式预编译与缓存机制:Java 性能优化实践

本文围绕 QLExpress 表达式引擎,系统讲解了预编译与缓存策略在 Java 高并发计算场景中的应用。通过 InstructionSet 预编译和 ConcurrentHashMap 缓存,实现了表达式重复执行的性能优化,并统计命中率和未命中率。文中提供完整示例,包括自定义函数注册、缓存策略设计及性能基准测试,结果表明缓存命中可显著提升执行速度,批量执行性能提升可达数倍。文章还总结了缓存容量控制、LRU策略、分级缓存和监控实践,为企业级动态规则计算提供可落地的优化方案。

2026-01-20 08:44:26 2815 4

原创 QLExpress变量与数据类型:表达式世界的基础单元

本文通过一个完整的 QLExpress 示例工程,系统讲解了 QLExpress 中变量与数据类型的设计理念与工程实践方式。内容涵盖基本数值类型、BigDecimal 精度计算、布尔逻辑、字符串与日期处理、变量赋值与作用域、显式类型转换、null 值防御,以及数组与 POJO 对象的访问机制。文章重点不在语法罗列,而在于揭示 QLExpress 作为“受限 Java 运行时”的类型哲学,并给出可直接用于生产环境的工程建议,帮助读者构建稳定、可预测、可维护的规则表达体系。

2026-01-20 08:44:04 2840 3

原创 从表达式到规则程序:QLExpress 控制流程机制与工程化实践解析

本文系统讲解了 QLExpress 中的控制流程机制,包括 if / else 条件分支、for / while 循环、break / continue 流程控制及其嵌套组合方式。通过完整可运行示例,展示了 QLExpress 如何从表达式计算升级为具备过程化执行能力的规则引擎,并结合规则引擎视角分析其在业务决策、批量处理与复杂规则建模中的工程价值。

2026-01-19 13:31:21 2812 2

原创 QLExpress 上下文变量解析:从参数容器到规则运行时世界模型

QLExpress 作为一款面向 Java 生态的高性能规则表达式引擎,其上下文(Context)机制是连接“规则逻辑”与“真实业务世界”的关键枢纽。本文通过一套完整、可运行的示例代码,系统性地剖析了 QLExpress 上下文变量的设计语义与工程价值,从基础变量读写、上下文可变性、复杂对象承载,到作用域、状态共享与自定义扩展,逐步揭示 Context 如何从一个简单的参数容器演进为规则运行时的“世界模型”。本文适合希望在规则引擎、决策引擎、配置化业务系统中深入使用 QLExpress 的技术人员阅读。

2026-01-19 13:31:01 3191 2

原创 从入门到可落地:QLExpress 基本语法体系化学习与实践指南

本文系统梳理了阿里巴巴开源规则引擎 QLExpress 的核心能力与工程实践路径。从整体架构与执行模型入手,说明表达式在规则引擎中的运行机制,帮助读者建立对 QLExpress 的全局认知。随后围绕变量与数据类型、操作符、控制流程、内置函数、字符串操作以及数组与集合等关键能力,结合典型示例,解析其在业务规则表达中的优势与边界。文章重点讲解了 上下文变量(Context) 这一核心概念,深入分析其在规则执行中的作用,包括运行时数据承载、变量作用域、状态共享与规则副作用管理等工程问题。

2026-01-18 11:14:15 3493 5

原创 QLExpress 数组与集合解析:语义模型、规则表达与工程实践

本文系统解析了 QLExpress 对数组与集合(List)的支持能力,围绕其语义模型、操作方式与工程实践展开说明。通过完整、可运行的示例代码,展示了数组与集合在遍历、统计、搜索、过滤等规则场景中的典型用法,并总结了在规则引擎中进行批量数据处理的设计原则与最佳实践。文章旨在帮助读者在不引入额外抽象成本的前提下,构建清晰、可维护、可演进的规则表达逻辑。

2026-01-18 11:13:48 3891 5

原创 Java+Python双语言开发AI工具全景分析与选型指南

文章重点对比了 JetBrains Junie、GitHub Copilot X、百度文心快码(Comate)等代表性工具,并结合不同开发角色、预算与应用场景,构建了可落地的选型决策矩阵。结论表明:在工程复杂度较高的 Java 场景中,具备项目级上下文理解能力的 IDE 原生工具优势明显;而生态型与国产工具则在跨 IDE、云原生或本土化场景中各具价值。本文旨在为 Java + Python 工程师及技术负责人提供一份 理性、可参考的 AI 编码工具选型指南。

2026-01-17 10:07:19 4069 5

原创 AI 编码工具全景分析与选型决策指南——从「代码补全」到「工程级智能体」的范式跃迁

本文基于 GitHub Octoverse、Stack Overflow Developer Survey 等公开数据,从技术演进、工程实践与组织治理三个维度,系统分析了 AI 编码工具从“补全器”到“工程级智能体”的范式跃迁路径。文章重点讨论了 AI 在 CI/CD、自动化测试、文档与知识管理、跨语言协同以及工程自治中的实际能力与现实约束,并给出了面向企业与团队的选型决策框架。结论指出,AI 的真正价值不在于替代工程师,而在于与人类专业经验形成协同,通过可控、渐进的方式提升工程效率、质量与组织治理能力。

2026-01-17 09:30:26 4408 3

原创 QLExpress 字符串能力解析:机制、用法与工程实践

QLExpress 作为一款深度融入 Java 生态的高性能表达式引擎,其字符串能力并非附属特性,而是直接构建在执行模型与表达式语义之上的核心能力。本文系统梳理了 QLExpress 的字符串模型与语义定位,结合大量可运行示例,深入讲解字符串在拼接、格式化、校验、处理与统计等场景下的典型用法,并从工程实践角度总结了适合与不适合交由规则层处理的字符串逻辑边界,帮助读者在真实业务系统中更稳定、高效地使用 QLExpress 承载字符串相关规则。

2026-01-16 00:45:43 4522 5

原创 商品供给域的工程化简要设计考量

本文以商品供给域为背景,从领域优先的视角出发,系统梳理了技术选型原则、核心与支撑子域的数据模型设计,以及通用域的工程化实践。文章重点通过 ProductPublished 领域事件,阐明事件驱动架构在商品、价格、库存等子域协作中的解耦价值,说明领域事件如何支撑最终一致性与系统长期演进,为构建稳定、可扩展的商品供给架构提供实践参考。

2026-01-16 00:45:09 4524 3

原创 QLExpress 内置函数体系:让规则不再演变为脚本化业务代码

在规则引擎落地过程中,函数能力的设计直接决定了规则系统是否会走向“脚本化、不可维护”的失控状态。QLExpress 并未自造一套封闭的 DSL 函数体系,而是选择以 Java 原生能力为核心,构建了一套高度可预测、低学习成本的内置函数机制。本文通过完整可运行示例,系统性梳理了 QLExpress 在数学计算、字符串处理、日期时间、类型转换与集合操作等方面的内置函数设计理念与工程价值,并结合规则建模视角,说明其如何有效约束规则复杂度、提升稳定性与可维护性。

2026-01-15 00:02:10 5804 3

原创 QLExpress基本操作符:表达式能力的核心引擎

本文围绕 QLExpress 的操作符体系展开,通过完整示例代码系统演示了算术、比较、逻辑及三元操作符在规则引擎中的实际行为与工程语义。文章不仅验证了 QLExpress 在类型处理、短路求值和 BigDecimal 精度计算等方面的设计特性,还从可维护性和规则建模角度,总结了操作符在业务规则表达中的最佳实践,帮助读者构建更稳定、可读、可演进的规则系统。

2026-01-15 00:01:34 5223 1

原创 QLExpress 底层技术细节与实现机制简要分析

本文围绕阿里巴巴开源规则引擎 QLExpress,从工程实践视角对其设计定位、底层执行机制、类型与表达式处理、扩展能力、性能优化与安全沙箱等核心内容进行了系统性解析。文章结合电商、风控、营销等真实业务场景,深入说明 QLExpress 如何在灵活性、性能与可治理性之间取得平衡,并通过与 Groovy、Aviator、Drools 等方案的对比,明确其适用边界与选型原则。整体旨在帮助工程师和架构师正确理解规则引擎的工程价值,在高频变化的业务场景中更高效、可控地落地规则驱动架构。

2026-01-14 09:21:47 5640 5

原创 商品供给域的领域化拆解与系统化设计

本文以领域驱动设计(DDD)为方法论,对“商品供给域”这一核心业务域进行系统性拆解,从整体视角将其划分为核心域、支撑域与通用域,并重点围绕门店商品、总店商品、价格、库存等关键子域,深入分析其业务定位、核心上下文与设计原则。同时,结合质量、标签、日志与事件通知等支撑与通用能力,探讨商品供给体系在架构层面的协同方式与长期演进路径。文章旨在为构建一个边界清晰、可治理、可扩展的商品供给架构提供一套可落地的领域建模与设计参考。

2026-01-14 09:21:23 5283 5

原创 探索未来智能的钥匙——ACA大模型工程师认证专栏导读

通过 ACA 大模型工程师认证课程,我们将全面掌握大模型技术、应用和工程方法,从基础知识到前沿技术,从文本分析到智能体系统,从微调方法到风险治理,形成完整的能力体系。在实际工作与学习中,学员能够充分发挥大模型的潜力,提升效率、创造价值。无论你是零基础入门者,还是希望将大模型技术落地应用的职场人士,ACA大模型工程师认证都将为你提供一条清晰的学习路径,助你快速掌握大模型的核心方法与工程实践。

2026-01-13 00:15:18 5992 4

原创 生成式大模型的风险与治理:从技术隐患到合规落地的系统性分析

本文围绕大模型落地过程中面临的个人信息保护、内容安全、模型安全与知识产权等核心风险,结合国内外真实案例,对风险成因进行系统分析。在此基础上,从个人信息合规、内容安全保障、模型安全防控和知识产权保护四个维度,梳理当前主流且具备可落地性的风险治理路径,并结合《生成式人工智能服务管理暂行办法》,探讨大模型应用备案与企业合规实践。文章指出,大模型风险治理是一项贯穿数据、模型、应用与制度全生命周期的系统工程,需以技术与治理协同推进,保障生成式人工智能的安全、合规与可持续发展。

2026-01-13 00:02:09 5980 2

原创 多模态大模型、混合专家模型与云端协同架构

本文系统梳理了现代人工智能中的三大核心技术方向:多模态大模型、混合专家模型(MoE)与大小模型云端协同。文章首先阐述多模态大模型通过统一语义空间、对比学习和多模态融合,实现跨文本、图像、音频等数据的智能理解与生成;随后介绍 MoE 架构利用稀疏激活和门控网络,实现大模型容量扩展与任务专攻能力;最后分析大小模型云端协同,通过云端大模型与边缘小模型协作,兼顾计算效率、低延迟与隐私保护。文章总结了各技术的优势、应用场景及研究进展,为未来智能系统设计提供参考。

2026-01-12 08:50:02 6337 4

原创 多智能体(Multi-Agent)系统在人工智能中的应用与发展

本文系统介绍了 多智能体系统(Multi-Agent System, MAS) 的概念、实现方法与应用案例,重点介绍了 MetaGPT、AgentScope、Camel AI、AutoGen、AgentVerse 和 斯坦福小镇 等开源项目与平台,详细阐述它们的架构、功能、部署方式和应用场景。文章还分析了多智能体系统的核心技术,包括任务分工、智能体间通信、推理与决策机制,并讨论了其优势、应用领域及未来发展方向,强调多智能体系统在协作智能和复杂任务解决中的关键作用。

2026-01-12 08:49:32 6243 3

原创 沉寂与重生:QLExpress4 的诞生与升级量化

QLExpress4 是阿里在规则引擎领域一次具有方向性意义的重构。它不再仅关注“能否执行规则”,而是围绕可解释性、可观测性与工程可控性,对解析引擎、执行模型和语法体系进行了系统升级。通过引入 Antlr4、表达式执行追踪、原生 JSON 支持以及更严格的安全策略,QLExpress4 显著提升了规则的可分析能力与长期演进价值。对于新系统而言,QLExpress4 已具备成为默认规则引擎的成熟度;对于存量系统,升级则是一项需要工程化评估的选择。

2026-01-11 11:40:45 6339 7

原创 基于 ModelScope-Agent 框架构建可落地的大模型 Agent 应用实践

本文系统介绍了 ModelScope-Agent 框架及其在大模型 Agent 应用中的实践。文章强调“Agent ≠ 更强的大模型”,解析其核心模块:推理核心、工具系统、执行调度和记忆管理。并详细说明框架在多模态内容生成、复合任务规划、多轮对话参数提取及基于检索问答中的应用,同时介绍已集成的工具生态及在线体验与本地运行方式。总结指出,ModelScope-Agent 提供可组合、可扩展的工程模板,为开发落地 Agent 应用提供高效路径。

2026-01-11 11:40:03 6758 3

原创 从大模型到 Agent:具备记忆与规划能力的智能体是如何工作的

本文从工程系统与认知结构的视角,系统梳理了大模型 Agent 的核心概念与关键能力演进路径。文章首先明确了 Agent 相较于传统大模型在交互方式与系统形态上的本质差异,随后重点分析了 Agent 的记忆机制(短期记忆与长期记忆)以及面向复杂任务的规划能力。在此基础上,文章深入介绍了 CoT、ToT、GoT 等推理范式如何推动大模型从线性推理走向搜索与结构化决策,并重点阐述了 ReAct 框架如何通过“推理—行动—反思”的闭环,将模型能力与真实环境交互有效结合。

2026-01-10 14:05:23 6702 19

原创 QLExpress :一款从内部工具到开源社区核心的脚本引擎

QLExpress 是一款源自阿里巴巴内部的轻量级 Java 规则与表达式执行引擎,成功解决了促销、风控、定价等场景中规则频繁变化、维护成本高的问题,并在 2012 年对外开源,逐步发展为被广泛采用的工程型规则引擎。本文沿着时间线,系统回顾了 QLExpress 从内部工具、社区开源、长期稳定应用,到十年沉寂后以 QLExpress4 形态完成架构重写的全过程。同时结合 AI 时代背景,分析了规则引擎在安全执行、可观测性与工程可控性方面依然不可替代的价值,总结其对企业级开源项目与规则系统演进的启示。

2026-01-10 13:58:51 6657 16

原创 知晓大模型微调:从业务动机到 LoRA 等高效微调方法

本文围绕大模型微调的实际应用展开,系统介绍了微调的核心价值与局限,强调其并非“银弹”,而是一项需要在数据质量、合规风险、算力成本与团队能力之间综合权衡的工程决策。文章重点解析了以 LoRA 为代表的参数高效微调方法,从原理、工程实现到实践优势,说明其为何成为当前最主流的微调方案,并为业务场景下的模型选型与投入决策提供了可落地的参考框架。

2026-01-09 08:53:05 7435 21

原创 QLExpress 企业级动态规则引擎实践:重塑电商促销系统的可配置化计算中枢

在复杂电商促销场景中,系统的难点并不在于单个折扣算法,而在于多规则之间的执行顺序、组合关系及频繁变化的业务需求。传统基于硬编码或策略堆叠的实现方式,往往导致规则失控、系统难以演进。本文基于一个真实的促销计算模型,系统性地介绍了如何使用 QLExpress 构建轻量级、工程化的规则引擎方案。通过引入“规则编排层”,将规则顺序与业务算法解耦,使促销规则具备可配置、可治理、可演进的能力,并结合架构设计、核心实现、复杂场景验证及性能分析,论证该方案在长期维护与业务扩展中的实际价值。

2026-01-09 08:49:51 7686 17

原创 快速了解 8 种常见的大模型微调方法(PEFT)

本文系统梳理了当前大语言模型微调的主流方法,重点介绍了八种参数高效微调策略:LoRA、QLoRA、Adapter Tuning、Prefix Tuning、Prompt Tuning、P-Tuning、P-Tuning v2 及 LoRA + MoE。文章从原理、操作流程、适用场景与工程实践角度,对每种方法进行了解读,并比较了它们在显存占用、任务适配性、灵活性与性能上的差异。通过对比与总结,本文为从业者提供了一套完整的微调认知框架,帮助在模型规模、任务复杂度和资源约束之间做出最优选择。

2026-01-08 09:08:21 7861 17

原创 Self‑RAG:让大模型“多想一步”的自反思检索增强生成机制

本文系统介绍了 Self‑RAG框架,其核心在于引入自我反思机制,使大型语言模型在生成前后能够动态评估检索需求与输出质量。通过按需检索、反思令牌和生成-批判一体化流程,Self‑RAG 显著提升了模型在开放域问答、事实验证和长文本生成任务中的准确性与一致性,同时减少幻觉与错误输出。文章还探讨了该机制的实现挑战、系统复杂性及在法律、金融、医疗等高可靠性场景中的应用前景,为大模型在专业任务中的可信生成提供了可行路径。

2026-01-08 08:24:55 8017 16

原创 从多种数据源中获取资料:推进 RAG 向结构化与图数据检索的融合

本文介绍了如何将结构化数据库和知识图谱纳入 RAG(Retrieval‑Augmented Generation)体系,提升智能问答和决策支持能力,涵盖 NL2SQL 与 Structured RAG、Graph-RAG 与图知识库构建,并重点分析了 Schema 理解、多源融合及查询安全等关键挑战,同时展望了跨结构化数据检索的发展趋势。

2026-01-07 08:41:33 8267 16

原创 Corrective Retrieval Augmented Generation(CRAG):构建更可靠的信息抽取与生成系统

本文围绕 Corrective Retrieval Augmented Generation(CRAG)展开,系统介绍了其提出背景、核心思想与整体架构。文章重点阐述了 CRAG 如何在传统 RAG 检索结果相关性不足的情况下,通过检索质量评估、知识片段提炼以及互联网补充搜索等机制,对信息获取路径进行纠正与增强,从而提升生成结果的准确性与覆盖范围。同时结合工程实现策略与典型应用场景,分析了 CRAG 在实际系统中的价值与优势,为构建更可靠、更具鲁棒性的智能问答与知识生成系统提供了实践参考。

2026-01-07 08:35:48 8607 16

原创 生产级提升 RAG 检索增强策略体系的关键策略

本文系统梳理了RAG在生产级问答系统中的关键优化策略,包括问题补全、多路召回与融合、Step‑Back 抽象理解、问题分解以及假设驱动检索(HyDE)。文章详细分析了每种策略的设计思路、工程实现及适用场景,强调通过自动补全用户问题、扩展检索视角、抽象宏观语义和生成假设答案,可以显著提升检索召回覆盖率、答案准确性与系统鲁棒性。最终指出,这些策略既可独立应用,也可组合部署,是 RAG 从“能用”走向“可规模化、生产级智能应用”的核心能力。

2026-01-06 08:52:56 8893 15

原创 持续改进 RAG 应用效果:从“能用”到“好用”的系统化方法

本文系统梳理了企业级 RAG(检索增强生成)系统的持续优化策略,强调从评测体系建设入手,通过提升检索质量、优化文本切分与语义检索、改进问题理解、多源信息融合以及引入自我反思机制等方法,提升系统的准确性、稳定性和专业性。文章指出,RAG 的优化是一个持续演进的工程过程,需在数据质量、检索策略、生成模型能力与反馈机制等多维度协同推进,以实现从“能用”到“好用、可信、可扩展”的目标。

2026-01-06 08:36:36 8813 17

原创 快速读懂 RAG 的原理、实现与工程实践

在大语言模型广泛应用的背景下,模型在专业知识、私域数据与实时信息场景中仍面临准确性与幻觉问题。检索增强生成(RAG)通过将信息检索与文本生成相结合,成为当前大模型工程化落地的核心技术范式之一。本文以“导游助理”为类比,系统阐述 RAG 的基本形态与本质思想,从工程视角拆解其索引构建、检索与生成流程,并结合阿里云 AI 助理的真实案例说明 RAG 在企业级场景中的应用价值。最后,通过一个无需编写代码的私域知识问答实验,完整展示 RAG 从概念到系统落地的实践路径,为构建可控、可靠的大模型应用提供参考。

2026-01-05 11:59:55 9563 21

大模型是如何工作的?从原理到通义生态的落地实践

大模型是如何工作的?从原理到通义生态的落地实践

2025-12-27

赢得签约战:用动态规划优化棒球自由球员选择策略

假设你是一支棒球大联盟球队的总经理。在寒季休季期间,你需要签入一些自由球员。球队老板给你的预算为X XX美元,你可以使用少于X XX美元来签入球员。但如果超支,球队老板就会解雇你。   你正在考虑在N NN个不同位置签入球员,在每个位置上,有P PP个该位置的自由球员供你选择。由于你不希望任何位置过于臃肿,因此每个位置最多签入一名球员(如果在某个特定位置上你没有签入任何球员,则意味着计划继续使用现用球员)。   为了确定一名球员的价值,你决定使用一种称为“VORP”或称为“球员替换价值”(Value Over Replacement Player)的统计评价指标(sabermetric)。球员的VORP值越高,其价值越高。但VORP值高的球员的签约费用并不一定比VORP值低的球员高,因此还有球员价值之外的因素影响签约费用。   对每个可选择的自由球员,你知道他的三方面信息:   • 他打哪个位置   • 他的签约费用   • 他的VORP   设计一个球员选择算法,使得总签约费用不超过X XX美元,而球员的总VORP值最大。

2024-08-03

BeanFactory内部解析:Spring框架的心脏如何运作

BeanFactory 是 Spring 框架中的一个核心接口,用于管理应用程序中的对象(也称为 bean)。它提供了一种将应用程序组件(如服务、数据源、控制器等)解耦并配置到应用程序中的方式。 总的来说,可以初步理解BeanFactory 为 Spring 框架中负责管理 bean 对象的核心组件,它通过 IoC 容器、延迟加载、依赖注入和作用域管理等机制,实现了对象之间的解耦和灵活配置,从而提高了应用程序的可维护性、可测试性和可扩展性。 Bean 的作用域管理: BeanFactory 支持不同的 bean 作用域,如 singleton、prototype、request、session 等。通过配置不同的作用域,可以控制 bean 对象的生命周期,并确保在不同的作用域下能够正确地管理 bean 对象的创建和销毁。 Bean 定义管理: BeanFactory 负责管理应用程序中的所有 bean 定义。这些 bean 定义通常是通过 XML 文件、注解或 Java 代码进行配置的。BeanFactory 负责解析这些配置信息,并在需要时实例化相应的 bean 对象。

2024-08-03

解读InnoDB数据库索引页与数据行的紧密关联

快速了解索引页结构和数据行的直接关系。前提知识如下: 数据行格式内容分析 探究InnoDB Compact行格式背后-CSDN博客 数据行头信息各个属性探究 解析MYSQL行头信息数据行格式分析_jdk 协程-CSDN博客 解析数据行内部单向链表策略 数据库记录行在页内查询探索分析 在InnoDB存储引擎的世界里,数据存储和管理就像是一座繁忙而有序的城市。在这座城市中,每一块16KB大小的土地都被称为一个“页”(Page),而这些页是城市基础设施的核心,其主角就是“索引页”(INDEX页),这些页专门用于存储我们表中的实际记录数据,因此也被称为“数据页”(Data Page)。 目录 一、快速走进索引页结构 (一)整体展示说明 (二)内容说明 File Header(文件头部) Page Header(页面头部) Infimum + Supremum(最小记录和最大记录) User Records(用户记录) Free Space(空闲空间) Page Directory(页面目录) File Trailer(文件尾部) 二、索引页与记录行的简单关系说明

2024-08-03

存储选型实战:用真实案例教你如何做出最佳存储决策

存储选型决策案例模板是一种用于指导组织或个人在选择适合其需求的存储解决方案时所采取的方法和过程的框架。通常包括背景信息、需求分析、候选解决方案、技术评估、成本分析、风险评估、决策依据、决策过程、实施计划、监测与评估等。 存储选型决策案例模板是一种有助于组织或个人更有效地选择适合其需求的存储解决方案的工具。它通过提供结构和透明度,帮助确保决策是基于充分的信息和综合的分析,从而降低了不明智的决策风险。 提醒:依然是模版,所以也可以应用与其他选型决策! 我们提炼主要信息给出其模版。 前置声明 一、需求分析 (一)技术需求 (二)非技术需求 二、存储调研 三、选型决策 (一)决策明细表 (二)决策汇总表 (三)决策结论 前置声明 一、需求分析 (一)技术需求 (二)非技术需求 二、存储调研 三、选型决策 (一)决策明细表 (二)决策汇总表 (三)决策结论 前置声明 一、需求分析 (一)技术需求 (二)非技术需求 二、存储调研 三、选型决策 (一)决策明细表 (二)决策汇总表 (三)决策结论

2024-08-03

揭秘大模型的世界:初步了解人工智能的核心技术

大模型(Large Models)并没有一个官方的统一定义,因为它通常是一个相对的概念,其大小会根据时间、技术和领域的发展而变化。大模型通常指的是深度学习中具有大量参数和计算资源需求的神经网络模型。这些模型在不同的上下文中可能有不同的大小阈值。 例如,对于自然语言处理(NLP)领域,大模型可能指的是包含数十亿到千亿参数的模型,如GPT-3、GPT-4等。对于计算机视觉领域,大模型可能是拥有数亿参数的深度卷积神经网络,如ResNet-152。 在深度学习领域,随着技术的进步,大模型的规模不断扩大,以提高模型的性能。因此,官方定义可能难以固定,但通常可以根据模型的参数数量、计算资源需求和任务性能来判断一个模型是否被称为"大模型"。 重要的是,大模型通常需要大量的计算资源和大规模的数据进行训练,因此在使用它们时需要仔细考虑资源和性能的平衡。

2024-08-03

自动状态管理革命:优化业务流程的智能解决方案

自动流转一般都是一个很大的处理系统,其中包含的处理内容是非常庞大的。在实际业务中,自动化状态流转可以大幅度提升工作效率和系统的响应速度。这种处理系统涉及到多个业务流程、状态管理以及相应的调度策略。开发这样的系统需要深入理解业务需求,并结合实际的技术架构来设计和实现。 在构建一个智能化状态流转处理模块时,我们首先需要明确业务流程的各个状态及其之间的转换规则。这些状态转换通常是基于特定的事件或条件触发的,因此,设计时需要考虑到如何有效捕捉这些触发条件,并在状态发生变化时进行相应的处理。模块的核心在于确保状态流转的准确性和实时性,同时保持系统的高可用性和稳定性。 在这篇文章中,我将提供一个简单的示例,展示如何构建一个自动状态流转处理模块的代码示例。这个示例将涵盖如何定义状态、如何处理状态转换以及如何管理状态流转过程中的事件和异常。需要注意的是,实际的业务场景可能会更加复杂,因此,示例中的代码仅作为一种基本的实现思路,具体的系统设计还需要根据实际业务需求进行调整和优化。 总之,自动化状态流转处理模块的开发是一个综合性的工程,需要开发者具备良好的系统设计能力和对业务流程的深刻理解。

2024-08-03

文档规范的终极指南:大型项目开发中必备的设计文档标准

产品经理通常会在产品开发过程中编写和使用不同层次的文档来指导产品的设计、开发和推广。这些文档的三个主要层次分别是BRD(业务需求文档),MRD(市场需求文档)和PRD(产品需求文档)。该部分应该直接将对应的相关文档url进行展示和做简要说明。 文档类型 说明 主要信息 BRD 商业需求文档 项目背景(产品介绍)、市场分析、团队、产品路线、财务计划、竞争对手分析 等 MRD 市场需求文档 目标市场分析(目标、规模、特征、趋势)、目标用户分析(用户描述、用户使用场景、用户分类统计、核心用户、用户分类分析、竞争对手分析 、产品需求概况(定位、前景)) PRD 产品需求文档 详细功能说明(功能清单、优先级、功能目的、功能详细说明)、业务流程(业务流程、用例)、业务规则、界面原型(界面流程、界面原型)、数据要求(输入输出、极限范围、数据格式等)

2024-08-03

从ES的JVM配置起步思考JVM常见参数优化

Java 8目前仍然是许多企业中主要使用的版本之一,尤其是对于比较保守的公司。在过去,CMS (Concurrent Mark-Sweep) 垃圾回收器在Java 8中是一种常见选择,因为它在某些场景下能够提供较好的性能。 然而,随着Java版本的不断更新,一些旧的特性和组件被淘汰或替代,比如CMS。Java 14中正式废弃了CMS,而新的垃圾回收器,如ZGC和G1,逐渐成为了主流选择。ZGC和G1在处理大内存堆和低停顿时间方面表现出色,适用于现代应用程序的需求。 另外,自Java 9以后,Java的发布模式也发生了变化,从长期支持(LTS)版本切换到了更频繁的发布,大约每六个月发布一次。Java 8和Java 11是目前支持的LTS版本,它们提供了更长时间的支持和维护,适合希望保持稳定性和兼容性的企业和组织使用。 关于JVM相关的优化和配置我们之前提到过很多基本的知识内容,简单进行回顾一下,今天我们就JVM常见优化参数为基本内容再次重新来说(主要从ES的JVM配置来强化理解)。

2024-08-03

互联网企业工程级复杂缓存设计

互联网企业工程级复杂缓存设计

2024-07-31

没有找到关于“Graph 模型在长对话场景稳定性”的系统评估数据

2025-12-04

任务切分策略依赖提示工程,是否可能引入规划器优化?

2025-12-04

目前的 Retry 机制似乎是静态规则,能否基于反馈自演化?

2025-12-04

LangGraph 是否支持可验证的 Agent Policy Alignment?

2025-12-04

多模态 Node 之间的数据 Schema 缺乏统一标准是否会限制生态扩展?

2025-12-04

LangGraph 是否支持 Memory 层的时间感知(Temporal Memory)?

2025-12-04

长程任务中 Graph 膨胀问题是否存在自动压缩策略?

2025-12-04

RAG 节点是否能成为 Graph Routing 的直接决策信号?

2025-12-04

LangGraph 在长链任务中如何衡量 Step 复杂度 vs Token 成本?

2025-12-04

Graph Execution Trace 粒度不足是否会限制 Root-Cause Debug?

2025-12-04

多 Agent 写共享内存同一 Key 时,LangGraph 是否提供一致性保证?

2025-12-03

Graph 状态在长链任务中如何保证可再现性?

2025-12-03

LangGraph 中 Memory 是否会随执行轮次逐步污染推理?

2025-12-03

如何在交互界面上呈现模型的不确定性(例如步骤置信、事实来源、可能失败的概率),以便提高用户的判断效率而不增加认知负担?

2025-12-03

对于需要边缘/本地部署的场景,如何在有限算力下实现“近似RAG”或“轻量化长期记忆”方案,使得离线模型仍能保持较高事实性与低延迟?

2025-12-03

当模型给出建议(例如法律文本修改或医学建议)时,如何量化“建议的可采纳性”(actionability)而不仅是语法/可读性?是否能提出界定 actionability 的客观指标并在用户研究中验证?

2025-12-03

在对含敏感/法律/医疗信息的自动生成内容进行“责任归属”时,是否存在一种可落地的策略,使模型或服务提供方能在发生错误/误导时承担合理责任而非无限免责?

2025-12-03

在保证长上下文语义连贯的同时,如何设计高效的“动态上下文裁剪”策略(既保留关键历史又不爆显存),并给出该策略比简单 sliding-window 或 recency-based 策略的严格改进证明或实验?

2025-12-03

是否能提出一个工程化的“可追溯来源标注机制”( provenance)

2025-12-03

在评估“长期记忆正确性”时,如何设计基准使其同时考察记忆插入、检索有效性和更新后的一致性(即写入后并不会导致旧知被错误覆盖)?

2025-12-01

能否提供一个通用的、可扩展的评测框架来衡量 Agent 在流程执行中的“步骤正确率/回滚率/资源消耗”?

2025-12-01

在多模态场景(文本+图像+短视频+音频)中,如何保证跨模态推理的语义一致性?有没有一种可量化的“跨模态一致性分数”供模型在生成时优化?

2025-12-01

如何在多模态推理中处理“模态间信息冲突”——例如图像提示和文本上下文互相矛盾时,模型应如何判定证据优先级并解释其选择?

2025-12-01

是否存在可信的在线微调(online fine-tuning)范式,能够在用户反馈到来时增量更新模型行为而不导致灾难性遗忘或性能偏移?

2025-12-01

当 Agent 面临“不可预见的外部错误”(网络失败、API 限制、数据格式异常)时,是否有稳健的错误恢复策略模板?如何在不中断任务语义的前提下“优雅降级”并向用户透明报告?

2025-12-01

如何在保持模型推理稳定性的同时实现“可插拔的长期记忆层”(persistent memory),支持:高频知识增量写入、低延迟检索以及版本化回滚?

2025-12-01

在复杂任务(多工具、多调用、需状态管理)下,如何设计一个可证明稳定的“工具调用调度器”(tool scheduler)——既能避免无限循环调用,也能保证工具组合的完备性与效率?

2025-12-01

大模型在多步推理中输出路径不透明,难以确定正确答案是否因偶然推得,而缺乏稳定复现机制

2025-12-01

能否提出一种端到端可微的“事实一致性校验器”架构(可插拔到大模型生成流程中),并证明其相比单次后处理 fact-check 的优势?

2025-12-01

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除