神经网络
Jaster_wisdom
程序员
展开
-
概率神经网络(PNN)
概率神经网络(Probabilistic Neural Network)是由D.F.Speeht博士在1989年首先提出,是径向基网络的一个分支,属于前馈网络的一种。它具有如下优点:学习过程简单、训练速度快;分类更准确,容错性好等。从本质上说,它属于一种有监督的网络分类器,基于贝叶斯最小风险准则。 概率神经网络一般有以下四层:输入层、模式层、求和层和输出层。有的资料中也把模式层称为原创 2017-04-07 17:05:58 · 42137 阅读 · 9 评论 -
计算机视觉、机器学习、模式识别、图像处理领域国内外期刊、会议汇总
重要国际期刊一、IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) (IEEE模式分析与机器智能汇刊) 链接:http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=34转载 2017-09-05 10:23:52 · 1722 阅读 · 0 评论 -
训练神经网络的简单例子(TensorFlow平台下Python实现)
本篇文章主要通过一个简单的例子来实现神经网络。训练数据是随机产生的模拟数据集,解决二分类问题。下面我们首先说一下,训练神经网络的一般过程:1.定义神经网络的结构和前向传播的输出结果2.定义损失函数以及反向传播优化的算法3.生成会话(Session)并且在训练数据上反复运行反向传播优化算法要记住的一点是,无论神经网络的结构如何变化,以上三个步骤是不会改变的。 完整代码如原创 2017-09-18 14:19:54 · 22807 阅读 · 4 评论 -
卷积神经网络(CNN)的规律总结
本篇博客主要讲述卷积神经网络(CNN)的一般规律和一些基本的特性。 卷积神经网络的局部连接、权值共享以及池化操作等特性使之可以有效地降低网络的复杂度,减少训练参数的数目,使模型对平移、扭曲、缩放具有一定程度的不变性,并具有强鲁棒性和容错能力,且易于训练和优化。 目前,常用的深度学习模型有深度置信网络(Deep Belif Network),即DBN,层叠自动去躁编码机SDA,卷原创 2017-09-12 19:19:03 · 2785 阅读 · 0 评论 -
BP神经网络(输出层采用Softmax激活函数、交叉熵损失函数)公式推导
本篇博客主要介绍经典的三层BP神经网络的基本结构及反向传播算法的公式推导。我们首先假设有四类样本,每个样本有三类特征,并且我们在输出层与隐藏层加上一个偏置单元。这样的话,我们可以得到以下经典的三层BP网络结构:当我们构建BP神经网络的时候,一般是有两个步骤,第一是正向传播(也叫做前向传播),第二是反向传播(也就是误差的反向传播)。Step1 正向传播 在正向传播之前,可以先给W,b赋初始值,原创 2017-10-28 21:42:29 · 19228 阅读 · 13 评论 -
加速神经网络训练方法及不同Optimizer优化器性能比较
本篇博客主要介绍几种加速神经网络训练的方法。我们知道,在训练样本非常多的情况下,如果一次性把所有的样本送入神经网络,每迭代一次更新网络参数,这样的效率是很低的。为什么?因为梯度下降法参数更新的公式一般为:如果使用批量梯度下降法(一次性使用全部样本调整参数),那么上式中求和那项的计算会非常耗时,因为样本总量m是一个很大的数字。那么由此就有了第一种加速方法:随机梯度下降法,简称SGD。 它的思想是,将...原创 2018-04-09 21:33:36 · 5573 阅读 · 0 评论 -
基于PyTorch的CNN卷积神经网络识别MNIST手写数字
本篇博客主要介绍基于PyTorch深度学习框架来实现MNIST经典的手写数字,运用CNN卷积神经网络。MNIST数据集来自美国国家标准与技术研究所,其中训练数据有60000张,测试数据有10000张,每张图片的大小是28*28像素我们可以基于PyTorch直接下载该数据集。该识别程序先使用一层卷积层(卷积核数量16,卷积核大小5*5,步长为1,允许边缘扩充),紧接着激活层使用ReLU函数,之后紧跟...原创 2018-04-11 10:51:57 · 3079 阅读 · 0 评论 -
基于PyTorch的LSTM长短时记忆网络实现MNIST手写数字
本篇博客主要介绍在PyTorch框架下,基于LSTM实现手写数字的识别。在介绍LSTM长短时记忆网路之前,我先介绍一下RNN(recurrent neural network)循环神经网络.RNN是一种用来处理序列数据的神经网络,序列数据包括我们说话的语音、一段文字等等。它的出现是为了让网络自己有记忆能力,每个网络模块把信息传给下一个模块,它的网络结构如下:对于输入的一段序列数据(X1,X2,X3...原创 2018-04-12 20:56:42 · 8780 阅读 · 7 评论