spark读取Jdbc数据

 

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <parent>
        <artifactId>test</artifactId>
        <groupId>org.example</groupId>
        <version>1.0-SNAPSHOT</version>
    </parent>
    <modelVersion>4.0.0</modelVersion>

    <artifactId>spark</artifactId>

    <properties>
        <!--        其实这就是变量引用       -->
        <spark.version>2.3.3</spark.version>
        <scala.version>2.11.12</scala.version>
        <spark.scala>2.11</spark.scala>
    </properties>


    <dependencies>

        <!-- scala语言 -->
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>${scala.version}</version>
        </dependency>
        <!-- spark_sql会包含所有spark核心包 -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_${spark.scala}</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <!-- spark和 hive的整合包 -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-hive_${spark.scala}</artifactId>
            <version>${spark.version}</version>
        </dependency>
    </dependencies>
    <build>
        <plugins>
            <!-- 指定编译scala的插件 -->
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>4.3.1</version>
                <executions>
                    <execution>
                        <goals>
                            <goal>compile</goal>
                            <goal>testCompile</goal>
                        </goals>
                        <configuration>
                            <args>
                                <arg>-dependencyfile</arg>
                                <arg>${project.build.directory}/.scala_dependencies</arg>
                            </args>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>

​​​​​​​

package com.ws

import java.sql.{DriverManager, ResultSet}

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.JdbcRDD

object SparkReadMysql {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
      .setAppName("spark加载mysql数据")
      .setMaster("local")

    val sc = new SparkContext(conf)


    val getConn = () => DriverManager.getConnection(
      "jdbc:mysql://localhost:3306/dynamic_rule", "root", "root")
    val resMapping = (rs: ResultSet) => {
      val id = rs.getInt(1)
      val name = rs.getString(2)
      val url = rs.getString(3)
      val perms = rs.getString(4)
      (id, name, url, perms)
    }

    /*
        new JdbcRDD(sc,getConnection(),sql,lower,upper,numpt,resultMapFunc)
        sc: SparkContext对象
        getConnection(): 一个返回数据库连接的函数
        sql: sql脚本,因为他要分区进行处理,所以sql中需要默认提供一个splitPK,并用占位符指定范围,用于分割 (menu_id> ? and menu_id<?),而且这个字段必须是整形
        lower: 下界
        lower: 上界
        numpt: 分区数
        resultMapFunc:resultSet转换函数
     */
    val rdd: JdbcRDD[(Int, String, String, String)] = new JdbcRDD[(Int, String, String, String)](sc,
      getConn,
      "select menu_id,name,url,perms from sys_menu where menu_id> ? and menu_id<?",
      0, 10, 1,
      resMapping)
    rdd.foreach(println)
    sc.stop()
  }
}

创建一个JdbcRdd,这个JdbcRdd是rdd的子类,需要7个参数,有一定局限性

    /*
        new JdbcRDD(sc,getConnection(),sql,lower,upper,numpt,resultMapFunc)
        sc: SparkContext对象
        getConnection(): 一个返回数据库连接的函数
        sql: sql脚本,因为他要分区进行处理,所以sql中需要默认提供一个splitPK,并用占位符指定范围,用于分割 (menu_id> ? and menu_id<?),而且这个字段必须是整形
        lower: 下界
        lower: 上界
        numpt: 分区数
        resultMapFunc:resultSet转换函数
     */

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值