基于 Codis 的冷热缓存优化

背景

  1. 热数据运维挑战:缓存存储分别有memcache,redis,redis cluster,codis等缓存对维护和运维带来很大的挑战。

  2. 冷数据成本挑战: 部分单服务内存超过500G根据三地两中心三副本部署共需要1.5T内存,未来随着用户增加内存不断的增加。

方案选择

  1. 针对热数据运维挑战:统一为codis方面集群的扩缩,自动负载,数据迁移和监控等

  2. 冷数据成本挑战:兼容codis协议使用磁盘存储kvrocks替换内存存储redis

性能及问题

codis-redis内存存储问题

  1. 不支持多网卡造成codis-proxy添加集群auth认证失败

  2. 缺少监控耗时:仅仅有codis-redis实例耗时没有codis-proxy监控耗时,造成业务反馈超时codis本身没有超时

  3. 懒惰删除不及时造成集群空间浪费比较大

codis-kvrocks磁盘存储问题

  1. 不支持codis协议,不支持水平扩缩容,不支持读写分离

  2. 读耗时较高

解决方案

codis-redis内存存储问题

1: 针对多网卡仅获取具有广播地址ip:

var broadcaseAddrs []string
    interfaces, err := net.Interfaces()
    if err != nil {
        log.WarnErrorf(err, "Can not get local interface info")
    }
    for _, inter := range interfaces {
        flags := inter.Flags.String()
        if strings.Contains(flags, "up") && strings.Contains(flags, "broadcast") {
            addrs,err := inter.Addrs()
            if err!=nil {
                log.WarnErrorf( err,"Can not get inter.Addrs")
            }else {
                for _,value :=range addrs {
                    broadcaseAddrs = append (broadcaseAddrs,value.String())
                }
                log.Infof("broadcaseAddrs %s ", broadcaseAddrs)
            }
        }
    }

2: 针对耗时无监控添加耗时超时100ms日志(请求ip,redis ip,redis命令,命令长度等维度),Filebeat采集日志针对耗时高请求进行监控报警:

func (s *Session) loopWriter(tasks *RequestChan) (err error) {
    p := s.Conn.FlushEncoder()
    p.MaxInterval = time.Millisecond
    p.MaxBuffered = maxPipelineLen / 2

    return tasks.PopFrontAll(func(r *Request) error {
        resp, err := s.handleResponse(r)
        if err != nil {
            resp = redis.NewErrorf("ERR loopWriter handle response, %s", err)
            if s.Conn!=nil {
                log.Errorf("ERR loopWriter handle response err=%s,remotip=%s", err.Error() ,s.Conn.RemoteAddr())
            }else{
                log.Errorf("ERR loopWriter handle response err=%s", err.Error())
            }
            return s.incrOpFails(r, err)
        }
        fflush := tasks.IsEmpty()
        if err := p.Flush(fflush); err != nil {
            return s.incrOpFails(r, err)
        } else {
            s.incrOpStats(r, resp.Type)
            cost:= time.Now().UnixNano() - r.UnixNano
            if s.config.SessionSlowlogTime > 0 && cost > s.config.SessionSlowlogTime*1000000 {
                log.Warnf("cmd=%s, resType=%s,resLen=%d,cost=%d,forward addr=%s,req key=%s, reqip=%s",r.OpStr, r.Resp.Type.String(),len(r.Resp.Value),cost/1000000,r.addr,r.key,s.Conn.RemoteAddr())
            }
        }
        if fflush {
            s.flushOpStats(false)
        }
        return nil
    })
}

3: 针对懒惰删除机制慢,加大低峰期删除key个数和频率,上线后删除过期的key加大10倍,节省内存资源。

func (s *Session) loopWriter(tasks *RequestChan) (err error) {
    p := s.Conn.FlushEncoder()
    p.MaxInterval = time.Millisecond
    p.MaxBuffered = maxPipelineLen / 2

    return tasks.PopFrontAll(func(r *Request) error {
        resp, err := s.handleResponse(r)
        if err != nil {
            resp = redis.NewErrorf("ERR loopWriter handle response, %s", err)
            if s.Conn!=nil {
                log.Errorf("ERR loopWriter handle response err=%s,remotip=%s", err.Error() ,s.Conn.RemoteAddr())
            }else{
                log.Errorf("ERR loopWriter handle response err=%s", err.Error())
            }
            return s.incrOpFails(r, err)
        }
        fflush := tasks.IsEmpty()
        if err := p.Flush(fflush); err != nil {
            return s.incrOpFails(r, err)
        } else {
            s.incrOpStats(r, resp.Type)
            cost:= time.Now().UnixNano() - r.UnixNano
            if s.config.SessionSlowlogTime > 0 && cost > s.config.SessionSlowlogTime*1000000 {
                log.Warnf("cmd=%s, resType=%s,resLen=%d,cost=%d,forward addr=%s,req key=%s, reqip=%s",r.OpStr, r.Resp.Type.String(),len(r.Resp.Value),cost/1000000,r.addr,r.key,s.Conn.RemoteAddr())
            }
        }
        if fflush {
            s.flushOpStats(false)
        }
        return nil
    })
}

codis-kvrocks

性能数据(第三方数据显示qps可以和redis媲美,耗时较高)
image
整体架构
image
问题
  1. 针对不支持codis增加对codis slot命令支持:
ADD_CMD("slotsscan",              CommandSlotsScan),
    ADD_CMD("slotsdel",               CommandSlotsDel),
    ADD_CMD("slotsmgrtslot",          CommandSlotsMgrtSlot),
    ADD_CMD("slotsmgrtone",           CommandSlotsMgrtOne),
    ADD_CMD("slotsmgrttagslot",       CommandSlotsMgrtTagSlot),
    ADD_CMD("slotsmgrttagone",        CommandSlotsMgrtTagOne),
    ADD_CMD("slotsrestore",           CommandSlotsRestore),
    ADD_CMD("slotshashkey",           CommandSlotsHashKey),
    ADD_CMD("slotscheck",             CommandSlotsCheck),
    ADD_CMD("slotsmgrtslot-async",    CommandSlotsMgrtSlotAsync),
    ADD_CMD("slotsmgrttagslot-async", CommandSlotsMgrtTagSlotAsync),
    ADD_CMD("slotsmgrt-exec-wrapper", CommandSlotsMgrtExecWrapper),
    ADD_CMD("slotsmgrt-async-status", CommandSlotsMgrtAsyncStatus),
    ADD_CMD("slotsmgrt-async-cancel", CommandSlotsMgrtAsyncCancel),

如果codis扩容实例需要迁移slot中keys代码如下:

void SlotsMgrtSenderThread::loop() {
  Redis::Slot slot_db(storage_);
  while (!IsStopped()) {
    auto s = Util::SockConnect(dest_ip_, dest_port_, &sock_fd, timeout_ms_, timeout_ms_);
    moved_keys_all_ = 0;
    while (is_migrating_) {
      if (keys_num_ <= 0) {
        sleep(1);
        continue;
      }
      std::vector<std::string> migrate_batch_keys;
      auto s = ElectMigrateKeys(&migrate_batch_keys);
      std::lock_guard<std::mutex> ones_guard(ones_mu_);
      std::copy(migrating_ones_.begin(), migrating_ones_.end(), std::back_inserter(migrate_batch_keys));
      if (migrate_batch_keys.size() != 0) {
          moved_keys_num_ = 0;
      }
      std::vector<std::string>().swap(migrating_ones_);
      for (auto const &key : migrate_batch_keys) {
        auto s = slot_db.MigrateOneKey(sock_fd, key);
        moved_keys_num_++;
        moved_keys_all_++;
        remained_keys_num_--;
      }
      if (error_) {
        break;
}

if (remained_keys_num_ == 0) {
LOG(INFO) << "[slots-mgrt-sender-thread] Migrate slot: " << slot_num_ << " finished";
        slotsmgrt_cond_.Signal();
        StopMigrateSlot();
        break;
      }
    }
}  // namespace Redis

2. 读耗时优化

RocksDB 的全量 Compact 导致磁盘 IO 从而造成业务访问的毛刺点问题,之前策略是每天凌晨低峰时段进行一次,过于频繁会导致访问毛刺点,频率过低会导致磁盘空间回收不及时。所以增加另外一种部分 Compact 策略,优先对那些比较老以及无效 KV 比较多的 SST进行 Compact。开启只需要在配置文件里面增加一行,那么则会在凌晨 3 到 7 点之间去检查这些 SST 文件并做Compact。

另外由于RocksDB定时Compact sst文件造成大量磁盘IO,而像SATA磁盘IO瓶颈最大200M/s超过这个阀值读写都要等待,所以还需要设置磁盘Compact最大磁盘IO阀值小于磁盘IO的瓶颈。

# The maximum allowed aggregated write rate of flush and compaction (in MB/s).
# If the rate exceeds max-io-mb, io will slow down.
# 0 is no limit
# Default: 500
max-io-mb 150
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值